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The solid tumor microenvironment, pre-metastatic niche, and fibrotic 

environment are known to have significant biochemical and biomechanical 

similarities to the fibrotic environment. All have significantly increased levels of 

factors such as TGFβ, HIF1α, TNFα, PDGF, VEGF, FGF, interleukins and other 

growth factors that are known to be pro-tumorigenic. Clinical and basic science 

research has shown that fibrosis presents an environment that favors tumor 

growth, such as hepatocellular carcinoma being commonly preceded by liver 

cirrhosis, or bleomycin induced lung fibrosis enhancing pulmonary metastasis in 

mouse models of breast cancer. In addition to the evidence indicating that fibrosis 

enhances primary tumor growth and metastasis it is also well characterized that 

primary tumor metastasis has specific organotropism, for example breast cancer 

commonly spreads to the lungs, brain, bone, liver and lymph nodes. However, 

whether non-organtropic f ibrosis can redirect metastasis to the damaged organ 

has not been investigated.  

To elucidate the fibrotic effect on tumor organotropism we induced fibrosis 

in the organotropic lungs and in the non-organotropic kidney of two mouse models 

of breast cancer, the 4T1 murine cancer cell line model and the genetic MMTV-

Pymt model, both of which are known to metastasize. Using histopathology, 
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microarrays, gene expression by polymerase chain reaction, ELISA, chemokine 

array, and in vitro experiments we demonstrate that despite the pro-tumorigenic 

environment, kidney fibrosis does not redirect metastasis to the non-organotropic 

damaged organ. However, mice with kidney fibrosis had increased metastasis to 

their lungs. Furthermore, we found that kidney fibrosis increases the circulating 

levels of the pro-angiogenic factor Angiopoietin 2 that increased vascular 

permeability of the lungs, but not the kidneys. In fact, while fibrotic lungs showed 

decreased expression of endothelial tight gap junction protein Claudin-5, the 

fibrotic kidneys had an elevated expression of Claudin-5.  

Our findings suggest that despite the similarities between fibrosis, the 

tumor microenvironment and the pre-metastatic niche, that while it can enhance 

tropic metastatic disease, it cannot redirect organotropism indicating that other 

factors must be involved in directing organotropism. Here we report t hat tumor 

organotropism may be a result of organ specific vascular responses to excess 

circulating factors and increased fibrotic factors . These findings indicate that 

organotropism is directly related to and as a result of organ specific vascular 

alterations.  
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Metastatic disease 

 

Metastatic disease is the leading cause of mortality in patients diagnosed with 

cancer (Patrick Mehlen and Alain Puisieux 2006, Li and King 2012). It is estimated that 

metastatic disease is responsible for 90% of human cancer deaths (Li and King 2012). In 

2016 1,685,210 people were diagnosed with cancer in the United States alone, 595,690 

died from that diagnosis (National Institute of Health). Therefore 536,121 people died due to 

metastatic disease in the United States in 2016. Globally, 7.38 million people died from 

metastatic disease in 2012 (World Health Organization). Although metastatic disease 

occurs in almost all cancer types including the hematological cancers, breast cancer 

metastasis is one of the more readily researched and characterized pathologies. According 

to the National Cancer Institute there are 246,660 new cases of female and male breast 

cancer a year and 40,450 deaths (National Institute of Health). With modern preventative 

measures such as early mammography it is possible to detect primary breast tumors before 

they become malignant. Early detection measures with breast cancer allow for the surgical 

removal of breast cancer tissue either by resection or in more advanced cases mastectomy. 

While resection and mastectomy have scarification outcomes, these can be fixed by plastic 

surgery and loss of breast tissue does not place life threatening burden on the patient. 

However, if breast cancer cells metastasize to organs required for the sustainment of the 

organism this can impose a life threatening diagnosis, meaning that 100% of breast cancer 

deaths are due to metastasis. Thus the early detection of breast cancer since the late 1990s 

has significantly reduced the numbers of breast cancer related mortalities. However, 

metastasis from breast cancer and other cancer diagnosis remains the primary cause of 

cancer patient mortality (Bleyer and Welch 2013).  
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The process of metastasis follows a defined route based around fundamental 

anatomy and the location of the primary tumor (Figure 1) (Fidler 2003). Based on 

Kundson’s Two hit hypothesis (Knudson 2000), two genetic mutations are required to occur 

in a cell that prompts the uncontrolled proliferation of that cell. The loss of a tumor 

suppressor and the gain of an oncogene are deemed sufficient to begin neoplastic 

formation. Initial formation of hyperplastic tissue begins the process of further genomic 

mutation which in turn begets even more genetic mutations (genomic instability), leading to 

dysplasia and cancer in situ (Gordon 2010). The increase in mutations acts as a Darwinian 

survival mechanism allowing the strongest tumor cells to survive and uncontrollably 

propagate (Pepper and Maley 2009). Most commonly this occurs in epithelial tissue which is 

separated from the surrounding stroma and vasculature by a basement membrane. 

Approximately 80-90% of tumors are epithelial in origin, the hematologic cancers make up 

8%, and cancer of the connective tissue is around 1-2% of cancer diagnosis (National 

Cancer Institute). All three types of cancer are known to undergo metastasis. As the tumor 

continues to progress it can begin to invade through the basement membrane by secreting 

matrix metalloproteinases that can degrade extracellular matrix proteins (Peinado and 

Lyden 2011). Once the basement membrane has been breached cells from the primary 

tumor may cross the endothelial cell wall into the circulation via paracellular transendothelial 

migration, also known as intravasation (Junqueira and Avraham 2011).  

In addition to degrading basement membrane via the secretion of matrix 

metalloproteinases, tumors also secrete significant angiogenic factors such as vascular 

endothelial growth factor (VEGF), angiopoietins, transforming growth factor β (TGFβ), tumor 

necrosis factor α (TNFα), epidermal growth factor (EGF) and many others (Nishida and 

Kojiro 2006). This continued secretion of proangiogenic factors induces the growth of new 
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vasculature within and around the tumor. However, unlike healthy organ vasculature, tumor 

vasculature is dysregulated and malformed often leading to leaky vessels, poor perfusion, 

and diminished immune cell trafficking (Siemann 2011, Keskin and Kalluri 2013). Tumor 

vascular dysregulation increases the hypoxic environment of the tumor and perpetuates the 

survival of tumor cells that will be more likely to survive in austere conditions such as the 

circulatory system. It also presents a route for tumor cells to more easily enter the 

circulation and travel to distant organ sites (Siemann 2011).  

Once tumor cells enter the circulation they are known as circulating tumor cells. 

Within the circulation these cells have to survive stresses that epithelial cells are not 

typically exposed to such as high shear stress from blood flow (Joosse and Pantel 2014). 

The malignant epithelial cells have to undergo a number of changes prior to entering the 

circulation that increases their capacity to survive. For example, healthy epithelial cells 

require attachments to adjacent cells via tight gap junctions, adherent junctions and/or 

desmosomes. The loss of these connections can result in apoptosis or autophagy due to 

anoikis (Gilmore 2005). Most cells within the body require cell-cell attachments to maintain 

survival signals with the exception of hematological cells such as red blood cells and 

immune cells. However, tumorigenic cells have typically undergone a process known as 

epithelial-to-mesenchymal transition that allows them survive in the absence of cell contact 

(Frisch and Cieply 2013).  

If the tumor cell is able to survive the circulatory stresses it must then adhere to the 

luminal side of the endothelial cells, and again transport across the endothelial barrier by 

parracellular transendothelial migration in a process called extravasation (Li and King 2012, 

Boelte and Ling 2010). If a circulating tumor cell is able to extravasate into the parenchymal 

space of an organ that disseminated cancer cell may either lay dormant or begin 
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proliferating into a metastasis. Whether dormant or proliferative, disseminated cancer cells 

must undergo a mesenchymal-to-epithelial transition (the reverse of EMT) and anchor 

themselves to the organ in which they have extravasated (Gunasinghe and Hugo 2012). 

Under the correct circumstances, growth factors etc. these cells may develop into life 

threatening metastatic disease. Given the multi-step process of the metastatic cascade it is 

a highly inefficient process with less than 0.01% of circulating tumor cells shed from the 

primary tumor ultimately able of developing a distant organ metastasis (Fidler 1970, Fidler 

2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of the Metastatic Cascade. The process of metastasis consists of multiple stages 

each considered rate limiting. (Arshad, F., L. Wang, C. Sy, S. Avraham and H. K. Avraham (2010). 

"Blood-brain barrier integrity and breast cancer metastasis to the brain." Patholog Res Int 2011: 

920509). This is an open access article distributed under the Creative Commons Attribution License, 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original 

work is properly cited. 
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Organotropism 

Metastatic organotropism is the propensity for tumors of a specific origin to spread to 

specific organs (National Cancer Institute). Based on basic science research, clinical 

reports, and pathology reports the National Cancer Institute reports the following likely 

metastatic organotropic organs for their primary cancer type (National Cancer Institute): 

Cancer type Main sites of metastasis* 

Bladder Bone, liver, lung 

Breast Bone, brain, liver, lung 

Colorectal Liver, lung, peritoneum 

Kidney Adrenal gland, bone, brain, liver, lung 

Lung Adrenal gland, bone, brain, liver, other lung 

Melanoma Bone, brain, liver, lung, skin/muscle 

Ovary Liver, lung, peritoneum 

Pancreas Liver, lung, peritoneum 

Prostate Adrenal gland, bone, liver, lung 

Stomach Liver, lung, peritoneum 

Thyroid  Bone, liver, lung 

Uterus Bone, liver, lung, peritoneum, vagina 

 

 

In 1889 Dr. Steven Paget proposed that certain primary tumors had specific 

metastatic tropism for specific organs, dubbed the seed-and-soil hypothesis. Paget stated 

that tumors of specific origin release circulating tumor cells, the seeds, which can only grow 

in a certain organ, the soil, based on the homeostatic factors found there. By performing 

autopsies on patients he observed a non-random spread from primary tumors to specific 

organs and deduced that this specific tumor organotropism was due to his seed-and-soil 

hypothesis (Paget 1889).  

Figure 2: National Cancer Institute’s list of sites that cancer most commonly spread to from the 

primary tumor.  (National Cancer Institute. About Cancer. (n.d.). Retrieved August 07, 2016, from 

http://www.cancer.gov/about-cancer) 
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In the early 1900s a pathologist named Dr. Irving Zeidman found that circulating 

tumor cells of specific tumor types had different morphological appearance and that certain 

morphologies permitted the crossing of the endothelial capillary barrier leading to metastatic 

growth (Ewing 1928). The observation that differing tumors release circulating tumor cells 

with different morphologies leant to the seed-and-soil hypothesis in that certain 

morphologies would be more likely to form emboli and more easily cross the endothelial 

barrier and extravasate. These were not homogenous populations of circulating tumors cells 

however and some cells did not appear to have the morphological attributes that would 

allow them to cross the endothelial barrier (Ewing 1928). This observation was one of the 

first examples of tumor heterogeneity and would be followed up with significant research 

over the next hundred years showing that tumors are not clonal populations deriving from a 

single dysplastic cell.  

Tumor heterogeneity is defined by the fact that tumors do not generally consist of 

clonal cells derived from a parent cell with X number of mutations, but rather a number of 

different neoplastic cells with varying mutations conferring differing Darwinian survival 

advantages (Marusyk and Polyak 2010). Based on the different pressures placed on the 

cancer cells in the primary tumor such as hypoxia, excess lactic acid content, changes in 

pH, different mutations will confer survival advantages that if left untreated will eventually 

form into the ability to metastasize (Pepper and Maley 2009). Within a tumor different areas 

are subject to different pressures, and within each organ these pressures are different, and 

within an individual patient these pressures are further diverse. This multi-level difference in 

selective pressures results in cancer in each patient being different from that of another 

patient, even with a similar diagnosis. In large part this is the basis for today’s research into 

more focused genetic therapies to target driver mutations. The heterogeneity of tumors 
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further indicates that the cells that are able to metastasize are also heterogeneous in 

nature, meaning that not all cells that metastasize are clonal either (Nowell 1976). However, 

research has shown that despite heterogeneous emboli in the circulation the metastatic 

tumors of melanoma where in fact clonally derived from a single parent cell (Talmadge 

1982). This is additional evidence that only certain cells derived from the primary tumor 

have the ability to survive and proliferate after leaving the primary tumor. This tumor 

heterogeneity was further evidence that the cells able to enter the circulation had conferred 

survival mechanisms that allowed them to propagate in specific environments, and thus 

added weight to the seed-and-soil hypothesis. When all this evidence is amalgamated the 

seed-and-soil hypothesis can be simply stated as cancer that can “metastasize to locations 

that are biochemically and physiologically favorable for implantation and growth 

(Ramakrishna 2013).” 

In 1980 Dr. Isiah Fidler published a seminal paper supporting the seed-and-soil 

hypothesis (Fidler 1982). After having worked with Dr. Irving Zeidman, Dr. Fidler performed 

experiments in which he injected B16-F10 cells intravenously, subcutaneously or 

intramuscular and observed their metastatic spread. The B16-F10 tumor cell line is a 

melanoma line that underwent serial transplantation to isolate a highly metastatic form of 

murine melanoma. Using both parabiosis and [125l]-5-iodo-2'-deoxyuridine cancer cell 

labelling experiments Dr. Filder observed that despite circulating tumor cells being able to 

reach both the kidneys and the lungs, they would only form metastasis in the lungs (Fidler 

1970). This led the authors to conclude that metastasis did indeed follow the seed-and-soil 

hypothesis given the presence of cancer cells in the kidney, but their inability to proliferate 

due to an unfavorable environment.  
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Prior to the seed-and-soil papers published in the mid-1900s, the predominant 

theory of metastasis was put forth by Dr. James Ewing. In the 1930s Dr. Ewing submitted 

an alternative hypothesis to seed-and-soil pertaining to metastatic disease in that cancer 

cells spread to specific organs due predominantly to the mechanistic nature of the vascular 

system (Ewing 1928). The vascular hypothesis asserted that once a cancer cell was able to 

enter the circulation it would pass through the arteries into arterioles and then capillaries 

and extravasate into parenchymal spaces. The organ that the cancer cell was able to 

extravasate to was immaterial of the primary tumor but due to the nature of vasculature and 

where the cancer cell happened to extravasate. The evidence for this was based primarily 

on research showing that metastatic cells predominantly formed emboli in the capillaries of 

metastatic organs, while similar emboli where found in the arterioles of organs that did not 

form metastasis (Ewing 1928). Ewing proposed that the circulatory framework and 

hemodynamics where responsible for the spread of cancer cells from their primary tumor. 

For example, breast cancer was likely to spread to the lungs because of its proximity to 

vena cava and the pulmonary arteries.  

Recent studies using zebra fish models to visualize extravasation have also shown 

that vascular mechanics are essential for the process of metastasis. Two studies (Stoletov 

2010, Kanada 2014), one by Stoletov et al. in 2010 and Kanada et al. in 2014 showed that 

when cancer cells where injected into zebrafish they could visualize the formation of emboli 

in the arterioles and capillaries. The researchers opted to use zebrafish due to the ease of 

visualization of their vasculature as compared to other animal models with non-opaque 

dermal layers. They also show that the endothelium played an active role in the crossing of 

the cancer cells across the vascular barrier and that when VEGF was depleted the cancer 

cells were unable to intravasate, but could still extravasate.  
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In addition to work in Zebrafish, significant gene research has focused on 

organotropism, predominantly in breast cancer mouse models. Dr. Joan Massagué 

compared the gene expression of human and mouse primary breast tumors in metastasis to 

the bone, lung and brain and identified a number of genes that are associated with organ 

specific metastasis. In their 2009 paper (Bos and Massagué 2009) they identified genes 

that were associated with increased metastatic spread to the brain. The brain possesses a 

particularly stable blood-brain barrier that is highly selective for permeabalization, none the 

less metastatic cells have developed a means by which to cross this barrier, while many 

chemotherapeutic drugs are unable to permeate the blood-brain barrier (Kreuter 2002). It is 

worth noting that a significant number of the genes found in these three different studies are 

overlapping, indicating that they may in fact not explain the organotropism of metastasis. 

The modern study of organotropism has focused primarily on researching the gene 

expression differences between different organs with metastatic disease and has not 

focused on the non-organotropic organs or vascular signatures.  

Both Paget’s and Ewing’s hypothesis offer explanations for the organotropic 

properties of metastatic disease, and much like the nature versus nurture argument it is 

most likely that both contribute to the spread of the disease. Since Paget and Ewing 

significant research has been done on the vasculature indicating that there is in fact organ 

specific differences. Although less well studied, organ specific vasculature may in fact marry 

Paget’s and Ewing’s hypothesis as tumors of specific origin may affect organ specific 

vasculature differently. The result would be different responses in vascular dysregulation in 

varying organs and could contribute to the explanation for cancer tropism. 
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Mouse Models for Metastasis and Organotropism 

To continue the study of metastatic disease varying models have been designed to 

faithfully replicate human metastasis. To date the most accurate models of metastasis are 

found in mice that have transgenic induction of a tumor or are injected with a human or 

mouse metastatic cancer cell line. The majority of transgenic cancer models can accurately 

recreate primary tumor progression, but have been less successful at modelling metastasis 

showing significantly decreased penetrance than in the human counterparts (Francia 2011). 

Human derived cell lines necessitate injection into mice that are devoid of an active immune 

system (NOD/SCID mice) so as to ensure that the tumors are not rejected, and thus 

decreases the replication of the human model. This is especially important given recent 

research showing the involvement of the immune system in tumor progression. There are a 

number of mouse derived cancer cell lines that metastasize and this allows the orthotopic or 

intravenous injection of mice with fully functioning immune systems that are known to 

metastasize (Francia 2011). Although mice do differ from humans, the orthotopic injection of 

mouse derived cancer cell lines does recapitulate the human model and is often used today 

in the lab. Two such cell lines are the melanoma B16-F10 (Hart and Fidler 1980) and the 

mammary fat pad 4T1 (Aslakson 1992, Pulasaki 2001) cell line to model breast cancer. The 

B16-F10 cell was isolated by Dr. Fidler from a spontaneous melanoma that derived in 

Black-6 mice and was serially transplanted from metastasis to produce a highly metastatic 

line. The 4T1 cell line was similarly derived from a spontaneous tumor, this one formed in 

the mammary fat pad of a BALBc mouse and was selected from numerous cells in the 

primary tumor that showed high metastatic potential. There are also cell lines derived from 

this same tumor that show less metastatic potential such as the 67NR cell line highlighting 

the heterogeneous nature of tumors. As mentioned before Dr. Fidler utilized the B16-F10 
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cell line to determine the organotropism of melanoma to the bone, brain, liver, and lungs. 

Similarly, the 4T1 cell line when injected orthotopically has shown metastasis to the bone, 

brain, liver, lung as does breast cancer in human patients. Numerous publications have 

highlighted the spread of the B16-F10 and 4T1 tumor cell lines to their organotropic sites 

providing weight to Paget’s seed-and-soil hypothesis.  

 More recent publications however have highlighted the capabilities of multiple mouse 

cancer cell lines including B16-F10 and 4T1 to grow in non-metastatic sites when injected 

directly or provided mechanistic support to reach non-organotropic site. A 2011 paper by Li 

et al used hydrodynamic injections of B16-F1, 4T1 and Renca renal carcinoma cells to force 

colonization of organotropic and non-organotropic organs. This procedure was typically 

used to study the intravenous injection of DNA or RNAi into mice to illicit a genetic 

phenotype. Hydrodynamic injections use high volume injections of anywhere between 8-

10% of body weight to force an increase in pressure in the inferior vena cava which in turn 

creates high internal hematological pressure. The increase in hemodynamic pressure 

induces systemic endothelial leakage leading to increased extravasation and colonization of 

the lungs, liver and the non-organotropic kidneys with B16-F1 and 4T1 cells. Contrary to the 

findings of the seed-and-soil hypothesis this indicates that given the ability to enter the 

perivascular parenchyma tumors can grow regardless of their etiology. Further evidence for 

this was published in 2013 when Antonio et al. showed that 4T1 mammary fat pad cells 

could be injected directly into the cortex of the kidney and grow and even metastasize from 

the kidney to the lung. They further showed that by damaging the kidney with renal 

ischemia reperfusion experiments they could provide a hypoxic environment that benefited 

tumor metastasis and thus showed increased spread to the lungs. Furthermore, the human 

cancer cell line MDA-MB-231 has also been shown to be capable of growth in the kidneys if 
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it is injected in the renal capsule. In this model they were additionally able to show that the 

MDA-MB-231 cells could invade from the renal capsule into the cortex of the kidney (Liu 

2007). 

 The evidence for both Paget’s seed-and-soil and Ewing’s vasculature hypothesis are 

numerous from both sides. Research has shown that tumors do indeed have a propensity to 

spread to and grow in specific organs, while additional research shows that by by-passing 

the endothelial barrier by forcing vascular leakage or direct injection to parenchyma allows 

for non-organotropic growth. Rather than a one or the other argument, much like nature 

versus nurture, both hypothesis are likely correct. However, rather than an effect on the 

parenchymal space as argued by the existence of the pre-metastatic niche, it is the effect 

that a primary tumor has on the organ specific vasculature that may determine metastatic 

organotropism.  

 Vascular System  

From the microbiological standpoint research into vascular biology has yielded 

interesting developments since its description as the cardiovascular system by Hippocrates. 

The endothelium is the inner most layer of the vascular tubing that makes up the circulatory 

system. This one cell layer thick barrier separates the luminal side of the hematopoietic 

system from the parenchymal space of organs, the abluminal perivascular side. While the 

luminal side is always exposed to the rapid flow of the circulatory system the abluminal side 

has profound differences depending on whether it is found in an artery, arteriole, metartiole, 

capillary, venules, or vein. The layers of the vasculature consist of three layers, the tunica 

intima (the innermost endothetial layer), the tunica media and the tunica adventia, the 

outermost layer which connects the vessels to the surrounding tissue (Grey 2005, 

Junqueira 2010).  
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Arteries: Branching out from the heart these arteries are large elastic arteries. These 

have an tunica intima similar to other aspects of the circulation. The tunica media consists 

of thick layer called the internal elastic lamina that can stretch under the high pressures 

found in the large arteries. The media of the arteries is the most distinguishing feature due 

to its thickness and layers of smooth muscle fibers. The adventia is thinner than the media, 

but contains immune cells, nerves and the vaso vorum (the vessel capillaries). These 

branch into the muscular arteries which begin the distribution of blood to the organs (Grey 

2005, Junqueira 2010).  

Arterioloes: The muscular arteries repeatedly begin branching off into smaller and 

smaller arterioles. Arterioles have a much smaller tunica media with only two smooth 

muscle layers as compared to the 40-50 layers in the arteries. In this layer there is almost 

no visible adventia layer. The arterioles denote the beginning of organ vasculature (Grey 

2005, Junqueira 2010). 

Capillaries: It is at the stage of the capillaries that the majority of nutrient and gas 

exchange occurs with the surrounding organ in capillary beds. Capillaries have a single 

endothelial layer forming the vascular tube, and being only one cell thick they allow only 

single cell luminal transport at a time. They no longer have a smooth muscle layer. While 

they are the smallest of the vessels they are almost the most numerous, making up 90% of 

the vasculature (Figure 3) (Grey 2005, Junqueira 2010). 

It is important to note that capillaries differ significantly in number and type based on 

which organ they are found. Three different types of capillaries exist:  

1) Continuous: These have no junctional spaces between endothelial cells and are 

marked by well-defined tight junctions. They are the most numerous type of 
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capillary and are found in muscle, lungs and exocrine glands. Their tight-

junctions allow for the highly regulated transport of molecules across the vascular 

barrier (Grey 2005, Junqueira 2010).  

2) Fenestrated: The second type of capillary has what is described as a sieve-like 

structure. These have many small openings along the endothelium allowing for 

the transport of larger more extensive molecules. One would expect to find these 

in organs that require rapid transport of multiple macro-molecules across the 

vascular barrier such as the bodies filter, the kidney, food absorption in the 

intestine and endocrine glands (Grey 2005, Junqueira 2010). 

3) Discontinuous: Sinusoidal capillaries have large openings between endothelial 

cells allowing for maximum exchange of molecules across the vascular barrier. 

This discontinuous layer also allows for cells to cross the vascular barrier with 

more ease than other capillaries and can thus be found in the liver and spleen 

predominantly (Grey 2005, Junqueira 2010).  

 

Figure 3: Schematic representation of A) continuous B) fenestrated and C) sinusoidal capillaries. 

(Junqueira, L. C. U. a., J. Carneiro and A. N. Contopoulos Basic histology. A Concise medical 

library for practitioner and student. Los Altos, Calif). Copyright Clearance 11611970. 
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Pericytes: In addition to differences in types of capillaries, there is also a marked 

variation in the coverage of pericytes in differing organ capillary vasculature. 

Pericytes are a mesenchymal cell that wraps around the capillaries with foot 

processes (Figure 4). They have been implicated in vessel stability, involvement 

in contractile functions of the vasculature and have been shown to communicate 

directly with the endothelial cells to which they are attached (Armulik 2011). 

Through electron microscopy, immunofluorescence and histology percicytes 

have been shown to wrap around endothelial cell capillaries at varying intervals 

depending on the organ observed. In the retina the ratio of pericyte to endothelial 

cell is close to 1:1, while in other tissues it may be closer to 10:1 and has yet to 

be characterized for all organs (Armulik 2011). Thus, to date there has been no 

extensive characterization of pericyte coverage comparison between each organ. 

By reviewing publications that have used healthy controls of either kidney or 

lungs stained with NG2, PDGFRb or Desmin it is evident that the kidney cortex 

pericyte coverage is less than that of the pericyte coverage in the lungs (Armulik 

2011). Regardless, this is an insufficient methods of analysis and an in depth 

characterization of organ specific pericyte coverage is required.  

Pericytes share a basement membrane with the endothelial cell on which 

they are found and connect to the endothelial cell via an adhesion plaque and 

peg-and-socket joints. The adhesion plaque consists primarily of fibronectin and 

structurally resembles adherence junctions. The peg-and-socket joint on the 

other hand has shown evidence of gap junctions (Armulik 2011). Particularly the 

Connexin 43 gap junction has been shown to allow for communication between 

endothelial cells and pericytes (Winkler 2011).  
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While pericytes where first identified in 1873 by Dr. Charles-Marie Benjamin 

Rouget, research into their roles and function in normal physiology and pathology 

has been limited to a select few researchers (Armulik 2011). One key issue with 

pericyte research has revolved around a lack of unilateral agreement of 

identifying markers. Currently the markers that have been validated for pericytes 

are PDGFRb, NG2, CD13, aSMA, and desmin (Figure 5). PDGFRb and NG2 

markers appear to be associated with pericyte recruitment to vasculature and 

thus would seem to represent a possibly more immature stage of pericyte 

(Armulik 2011). In contrast, Desmin, which is a contractile filament predominantly 

expressed in the heart and muscle is a marker for mature pericytes and lends to 

the generally accepted view that pericytes are involved in vascular constriction 

and relaxation. It is important to note that in addition to being positive for the 

following markers pericytes are also identified by their proximity to vessels. While 

this can be done using an electron microscope, co-immunofluorescent staining is 

necessary to show both pericyte markers and endothelial cells (Armulik 2011).  

Figure 4:  The Structural and Molecular Connections between Pericytes and Endothelial 

cells. (Winkler, E. A., R. D. Bell and B. V. Zlokovic (2011). "Central nervous system 

pericytes in health and disease." Nat Neurosci 14(11): 1398-1405). Pericytes connect to 

endothelial cells by Adhesion plaques and Peg-and-Socket joints. Right provided by 

Nature Publishing group.  
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More recent research from Dr. Raghu Kalluri and Dr. Valerie LeBleu has 

highlighted the role of pericytes in pathological states. The 2015 paper by Keskin 

et al. showed the role of pericytes at different stages of tumor development by 

selectively ablating proliferating pericytes at either early or late stage of tumor 

development in a mouse model of breast cancer. In 2013 LeBleu et al. used 

genetically engineered mouse models to fate map the source of myofibroblasts in 

kidney fibrosis. She noted that the majority of myofibroblasts that contribute to 

excess collagen in fibrosis are derived from local fibroblasts that differentiate into 

myofibroblasts when exposed to certain cytokines. The remaining myofibroblasts 

where derived from the bone marrow, endothelial cells undergoing EndMT and 

epithelial cells undergoing EMT. However, they found that NG2 and PDGFb 

pericytes while increasing during kidney fibrosis did not contribute to the 

myofibroblast population within kidney fibrosis. 

Figure 5:  Pericyte markers in murine research. PDGFRb, NG2, CD13, aSMA, and Desmin have all 

been validated as murine markers of perciytes when associated with vasculature (Armulik, A., G. 

Genove and C. Betsholtz (2011). "Pericytes: developmental, physiological, and pathological 

perspectives, problems, and promises." Dev Cell 21(2): 193-215). Elsevier user license CC BY 4.0. 
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The role of pericytes in lung fibrosis has also been characterized using similar 

methodologies. In 2013 Hung et al. used Foxd1 tagged to Tomato red to show 

that this population overlapped with PDGFRb positive cells and was thus a 

pericyte population. Utilizing Bleomycin to induce lung fibrosis they showed that 

this population contributed significantly to the fibrotic environment. However, in 

2013 Rock et al. used NG2 expressing GFP under the control of Tamoxifen 

inducible promoter to map the expression of pericytes during bleomycin induced 

lung fibrosis. While they noted an increase in NG2 and PDGFRb positive cells in 

lung fibrosis they did not see a costaining with aSMA, which would indicate the 

transition from pericyte to myofibroblast. These conflicting reports underline the 

issue of the need for agreement on pericyte identification.  

Venules: After leaving the capillaries the circulation travels to the venules which also 

have pericyte coverage. In post-capillary venules it has been found that these are the 

primary sites that white blood cells diapedesis to parenchymal tissue during the 

inflammatory process. The observation that white blood cells diapedesis specifically at 

venules is of importance as it highlights the heterogeneity of endothelial cells. As the 

venules increase in size towards veins, they show an ever increasing tunica media with 

smooth muscle layers. A key characteristic of venules is they have a lumen that is far wider 

in diameter than the thickness of their wall (Grey 2005, Junqueira 2010). 

Veins: Unlike arteries veins have a relatively low pressure and thus move blood flow 

back to the heart via the contraction of large smooth muscle around the vessel. This 

function leads to the structural characteristic that veins have a prominent intima, a small 

media and an adventia with large smooth muscle fibers for contraction (Grey 2005, 

Junqueira 2010). 
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 The description of the vascular system highlights that most circulating tumor cell 

extravasation occurs in capillaries responsible for organ oxygenation and nutrient supply. Of 

interesting note is that despite the different capillary types this does not seem to correlate 

with organotropism. For example, lungs have continuous endothelial capillaries whereas 

kidneys are known to have fenestrated capillary endothelium. Given the presence of the 

small holes and macromolecules crossing the endothelial border it would stand to reason 

that the kidney should be a site of metastatic spread. However, as is apparent from Figure 

2. the kidney is not a common site of metastatic spread in any primary tumor.  

 In addition to the endothelium of the lungs being continuous and that of the kidneys 

being fenestrated both have unique vascular structure, but are highly vascularized. Blood 

flow to the kidney enters via the renal artery at the hilus, flows into the interlobar artery, the 

arcuate artery, the interlobular artery, then efferent arteriole of the glomerulus (Figure 6A) 

and into the capillary tuft that forms the glomerulus (Figure 6B). From here blood flows out 

of the glomerular tuft via the efferent arteriole and into either peritubular capillaries or the 

vasa recta capillaries depending on the cortical location of the glomerulus. The peritubular 

capillaries and vasa recta are the capillary structure of the kidney and ensure the cortex and 

medulla of the kidney are highly vascularized as this is where water, Na2+, Cl- and other 

ions are reabsorbed (Figure 6C). Blood then leaves the kidneys via veins with the same 

names as the capillaries and arteries (Grey 2005, Junqueira 2010). The glomerular tuft is a 

unique structure in that the capillaries in this structure are covered by a specialized cell 

called a podocyte. Podocytes, similar to pericytes form foot processes around the 

capillaries. These foot processes interdigit and form a filtration slit diaphragm, therefore in 

addition to having to cross the endothelial layer, molecules and or cells also have to cross 

the filtration slit diaphragm in order to enter the parenchymal space of the kidney. Research 
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has shown that in some pathologies such as Alport syndrome red blood cells can cross the 

endothelial layer in the glomerular tuft and enter the filtrate. Of interest is recent research 

showing that the under other pathological conditions the slit-diaphragm can in fact tighten 

with the increased expression of Claudin-1 between pedicel processes. This increased 

expression of Claudin-1 would generate tight junctions that are less permeable to molecules 

crossing the glomerular basement membrane barrier. However, upon leaving the efferent 

arteriole only a single layer of capillary endothelial cells separates the circulation from the 

parenchymal space in the peritubular arteries and the vasa recata. Finally, the hydrostatic 

and osmotic pressure within the kidney is highly unique due to its filtration function. As the 

glomerulus filters out ions but is not permeable to larger molecules such as Albumin there is 

an increase in protein concentration within the plasma circulating in the kidneys. This 

increases as water is absorbed by the proximal tubules and further ions are absorbed by 

the tubules further along the nephron. Thus typical pressures in the vasculature of the 

kidney are 20-30mmHg starting at the glomerulus and increasing as more ions are 

transported out and the protein to plasma concentration increases (Grey 2005, Junqueira 

2010).  
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Relative to the kidney, the pressures in the lung are much lower ranging from 5-

25mmHg (Grey 2005, Junqueira 2010). This allows the pulmonary vessels to be thin 

allotting to the function of the lungs of transport of Oxygen and Carbon Dioxide within the 

Figure 6:  Vasculature and blood of the kidney. A) The 

Glomerular tuft consists of capillaries surrounded by 

podocytes that form the filtration slit diaphragm. B) Kidney 

blood flow route. C) The peritubular capillaries and vasa 

recta capillaries surround the kidney nephron for reuptake 

of solutes and water (Junqueira, L. C. U. a., J. Carneiro 

and A. N. Contopoulos Basic histology. A Concise medical 

library for practitioner and student. Los Altos, Calif). 

Copyright Clearance 11611970. 
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alveolar ducts. The alveolar ducts are made up of alveoli that are capable of diffusing O2 

and CO2 with blood in the surround capillary network (Figure 7). Blood leaves the left 

ventricle of the heart and enters the lungs through the pulmonary artery where it branches 

into capillaries that line the alveoli. Once reoxygenated the blood then returns to the heart 

via the pulmonary vein and is ultimately pumped to the systemic circulation by the aorta 

(Grey 2005, Junqueira 2010). 

 

 

 

 

 

 

 

Figure 7:  Vasculature of the Lung. Pulmonary capillaries allow for the diffusion of O2 and CO2. Type 

I cells are primarily responsible for the gas diffusion. Type II cells are primarily responsible for the 

production of surfactant to lubricate the lungs and prevent larger macromolecules crossing into 

perivascular spaces. (Junqueira, L. C. U. a., J. Carneiro and A. N. Contopoulos Basic histology. A 

Concise medical library for practitioner and student. Los Altos, Calif). Copyright Clearance 

11611970. 
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Angiogenesis and Angiopoietins 

In 1779 surgeon Dr. John Hunter stated whenever “Nature has considerable 

operations going on, and those are rapid, then we find the vascular system in a 

proportionable degree enlarged (Eiseman 1984).” This observation was likely the first 

description of the changes that the vascular system undergoes in both normal healthy 

physiology beginning in utero and under many pathological conditions as well. The term 

angiogenesis was coined first during the description of the formation of the placenta (Hertig 

1935). However, it was not until 1971 when Dr. Judah Folkman published his work 

describing the angiogenic process in tumor growth and cancer dependence on 

angiogenesis that the importance of the angiogenic process became evident in both normal 

and pathological conditions (Folkman 1971).  

Vasculogenesis begins in utero and is the first aspect of embryo development 

beginning after gastrulation to ensure the formation of the cardiovascular system. This 

differs from angiogenesis in that it is the de novo formation of vessels from the mesoderm. It 

can also occur post utero with the development of new vessels from angioblasts. 

Angiogenesis on the other hand is the formation of blood vessels from existing vessels and 

can occur via two differing mechanisms (Figure 8) (Hunt 2002):  

1) Sprouting Growth: Sprouting angiogenesis occurs with the formation of a tip cell 

from an existing capillary or vessel. This requires that surrounding basement 

membrane be proteloytically degraded, that endothelial cells migrate and 

proliferate, and ultimately that they are finally stabilized by mature pericytes. The 

tip cell begins the process by budding off from the parent vessel and moving 

towards the direction of a pro-angiogenic factor (such as VEGF). By utilizing 

filapodia tip cells are able to degrade surrounding basement membrane and 
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extracellular matrix to allow for the growth of vessels. Once the tip cell has 

reached another vessel they anastomize and become a connected capillary with 

a fully formed lumen. At this point pericytes will cover the endothelial cells and 

ensure stabilization.  

2) Inteussceptive Growth: In contrast to Sprouting angiogenesis, this process 

involves the splitting of the vessels and lumen into two vessels. This was first 

observed in the lung and is believed to be a more rapid form of angiogenesis.  

 

 

 

 

 

 

 

 

 

 

Both forms of angiogenesis require either mechanical or growth factor stimulus to 

begin the process of vessel growth. Evidence suggests that angiogenesis is a balance 

process in that vessels are generally quiescent when there is a balance between pro-

angiogenic factors and anti-angiogenic factors (Hunt 2002). Upon stimulation by either 

mechanical means or by growth factors the scales can be tipped in one direction to initiate 

Figure 8:  The three methods of angiogenetic growth A) Classical capillary growth B) 

Intussusceptive growth C) Longitudinal growth (Hunter, J. (2007). "A treatise on the blood, 

inflammation, and gun-shot wounds. 1794." Clin Orthop Relat Res 458: 27-34). 
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the angiogenic process. Mechanistically anything from cold, changes in blood flow pressure, 

and shear stress can initiate angiogenesis. The presence of hypoxia in tissues is a key 

initiator for angiogenesis (Hunt 2002).  For example, exercise has been shown to initiate 

angiogenesis in the heart and muscles, while excess adipose tissue development has 

shown an increase in angiogenesis as well (Hunt 2002). While exercise is beneficial and 

excess adipose tissue growth is considered non-beneficial this highlights the role of 

angiogenesis in both normal and pathological processes. Angiogenesis is key in normal 

wound healing, but is implicated in tumor growth and many other pathologies.  

In association with the mechanical stimulus there are also a number of growth 

factors that have been shown to be pro-angiogenic and anti-angiogenic (Figure 9). As 

previously mentioned hypoxia is well established to induce the angiogenic process, and this 

occurs when epithelial and stromal cells begin secreting pro-angiogentic factors in response 

to hypoxia so as to ensure vessel growth to increase vascularization of that hypoxic area 

(Hunt 2002).  

 

 

 

 

 

  

 

 
Figure 9:  Factors affecting angiogenesis as determined from in vitro 

studies(Hunter, J. (2007). "A treatise on the blood, inflammation, and gun-

shot wounds. 1794." Clin Orthop Relat Res 458: 27-34). 
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VEGF is considered a key indispensable growth factor for angiogenesis, but 

nonetheless there are significant other factors that are involved in initiating and maintaining 

the angiogenic process (Hunt 2002). The angiopoietins are an interesting angiogenic growth 

factor as they come in multiple isoforms which work antagonistically to ensure a balance of 

pro and anti angiogenic factors.  

 The tyrosine kinase receptor Tie-2 has been shown to be expressed predominantly 

on endothelial cells and given that it has been shown through xray-crystalography studies 

that both Angiopoietin 1 and Angiopoietin 2 are highly specific ligands for Tie-2 extensive 

research has been focused on the effects of these angiopoietins on the vascular system 

(Barton 2006). Significant research has shown that these two ligands act antithetically on 

endothelial cells; Angiopoietin 1 stabilizes endothelial cell-cell interactions and limits 

vascular permeability, Angiopoietin 2 has the opposite effect and decreases the endothelial 

cell-cell interaction and leads to increased vascular leakage (Fagiani 2013). In combination 

with increased levels of VEGF, Angiopoietin 2 has been shown to promote the angiogenic 

process. While this may prove beneficial in normal healthy regulated physiology such as 

wounds, in the pathological circumstances when excess Angiopoietin 2 is created this can 

lead to systemic vascular leakage (Parikh 2006). In fact, excess expression of Angiopoietin 

2 has been linked with poor prognosis for breast cancer patient metastatic disease (Keskin 

and Kalluri 2015).  

 The angiopoietins work by binding to Tie-2 on endothelial cells and causing 

intracellular downstream alterations that lead to either the stabilization or destabilization of 

tight and adherent junctions between cells (Figure 10A, B). Angiopoietin 2, on binding to 

Tie-2 increases the intracellular cytoplasmic levels of Rac to RhoA ratio, which in turn is 
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believed to destabilize both tight junction complexes and adherent junction complexes 

(Felcht 2012).  

 

 

 

 

 

 

  

The antagonistic nature of the angiopoietins has led to research showing that under normal 

physiological conditions the ratio of Angiopoietin 1 to Angiopoietin 2 shows higher levels of 

the former. Conversely, when tissue damage occurs there is a rapid release of Angiopoietin 

2. This occurs as Angiopoietin 2, with a half-life of 18 hours is stored in Weibell-Palade 

bodies, which are small organelles found in endothelial cells (Rondaij 2006). Weibell-Palade 

bodies were initially studied for their storage properties of Von Willibrand factor, a 

fundamental clotting factor responsible for platelet binding during tissue damage. Later 

research found that Angiopoietin 2 is also stored in Weibelle-Palade bodies and rapidly 

released to tip that balance towards the pro-angiogenic process so as to re-vascularize 

damaged tissue (Valentijn 2011). More recent research has shown that Weibelle-Palade 

bodies are in fact a heterogeneous population in that some have Angiopoietin 2 stored, 

while others seem to store P-selectin in an exclusive manner (Valentijn 2011). Lending 

further evidence to the argument that vasculature in different organs may in fact respond 

Figure 10: A) Representation of Tie 2 receptor and Angiopoietin structure. B) Representation of 

Angiopoietin binding to Tie 2 (Fagiani, E. and G. Christofori (2013). "Angiopoietins in angiogenesis." 

Cancer Lett 328(1): 18-26). Elsevier user license CC BY 4.0. 
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differently to the same stimulus. In fact, on comparison of quiescent lung and kidney 

endothelium it has been found that significantly higher levels of Angiopoietin 2 are 

expressed in the kidneys (Gale and Yancopoulos 2002). This indicates that the kidneys 

store Angiopoietin 2 in Weibell -Palade bodies at higher levels than the lungs.  

Tight Junctions 

Tight Junctions are the most apically located junctions that are responsible for cell-

cell contact and can be found in epithelial and endothelial tissues (Figure 12B) (Steed 

2010). Typically, fibroblasts have been shown to not express tight junction proteins. Due to 

the apical location of tight junctions in the endothelial cells they are key structures involved 

in the regulation of vascular permeability (Anderson 2009). This is predominantly true for 

large structures crossing the endothelial barrier such as immune cells or circulating tumor 

cells. Whereas smaller molecules may be transported through endothelial cells via a 

process known as transcellular transendothelial migration, larger structures such as cells 

have been shown to almost exclusively cross by paracellular transendothelial migration 

which is by passing between two endothelial cells (Erika 2009). In the presence of complete 

tight junction complexes between endothelial cells there is a limited capability for cells or 

larger macromolecules to cross the endothelial barrier (Figure 11). However, as mentioned 

above when there is increased expression of pro-angiogentic growth factors such as VEGF 

and Angiopoietin 2, the proteins of tight junction complexes become dissociated leading to 

increase vascular permeability.  

 

 

 

1. Figure 11: A) Electron Microscope Image of endothelial cells tight junction. B) Schematic 
representation of transmembrane proteins responsible for tight junction formation. (Weiss, 
N., F. Miller, S. Cazaubon and P. O. Couraud (2009). "The blood-brain barrier in brain 
homeostasis and neurological diseases." Biochim Biophys Acta 1788(4): 842-857). Elsevier 
user license CC BY 4.0. 
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Tight junction complexes consist of multiple proteins bound together to form the 

connection between two cells. The three transmembrane proteins directly responsible for 

cell-cell binding are the claudins, occludin and the junction adhesion molecules (Steed 

2010). Knock out experiments have shown that occludin is not required to form the tight 

junction, but is involved in recruitment of the proteins to the tight junction complex (Yu 

2005). There are three junction adhesion molecules (Jam1,2,3) that have also been shown 

to be involved in stabilization of tight junctions and their knockout has led to increased 

sensitivity to inflammation (Anderson 2009). The claudin family of proteins, of which there 

are 27 isoforms in mus musculus (Ouban 2012), are the primary proteins that form tight 

junctions. Research has shown that there are two types of claudins, tight junction forming 

and channel forming. The tight junction forming claudins are responsible for the binding of 

cells to adjacent cells and barrier function, while the channel forming claudins form 

communication pores between adjacent cells, similarly to the gap junction connexins 

(Krause 2008). Claudins have been shown to bind to claudins on adjacent cells, and 

although every combination and permutation has not been tested it does appear that 

claudins can bind to like claudins and some can also bind to different isoforms (Anderson 

2009.  

 

 

 

 

 
Figure 12: A) Representation of transmembrane proteins interactions and binding to proteins of the 

Tight Junction complex. B) Image depicting the apical localization of the tight junctions in both 

epithelial and endothelial cells. C) Schematic of ZO-1 binding sites. (Bazzoni, G. and E. Dejana 

(2004). "Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis." 

Physiol Rev 84(3): 869-901). Permission is not required for this type of use. 
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To localize to and stabilize tight junctions as transmembrane proteins the claudins, 

occludin and the JAMs intracellular domains bind to the Zonnula Occludin 1 (ZO-1) protein 

on specific domains (Figure 12A) (Bazzoni 2004). The claudins have been shown to bind 

to the PDZ1 domain, the JAMs to the PDZ2 and PDZ3 and occludin binds to the GuK 

domain (Bazzoni 2004). There is an additional SH3 domain that has been shown to be 

necessary for PDZ binding stabilization (Lye 2010). Upon dissociation of the 

transmembrane proteins from ZO-1, the ZO-1 protein delocalizes from the membrane and 

moves towards the nucleus, although it’s function at and near the nucleus is not known 

(Figure 12C) (Bauer 2010). In fact, it has been shown that during the process of EMT there 

is a decrease in membrane ZO-1 as the tumorigenic cells gain the ability to survive without 

cell-cell contacts (Zeisberg 2009).  

Unfortunately, there has been limited research on the tight junctions that exist 

between endothelial cells within different tissues and organs. The majority of tight junction 

research has focused on epithelial cells and is inferred to endothelial cells. For example, it 

has been shown that different claudins predominant at different stages along the epithelial 

Figure 13: Representation of the location of the Claudin tight junction proteins along the kidney 

nephron. (4. Angelow, S., R. Ahlstrom and A. S. Yu (2008). "Biology of claudins." Am J Physiol 

Renal Physiol 295(4): F867-876). Permission is not required for this type of use. 
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cells of the kidney nephron (Figure 13) and that there is a kidney specific Claudin-10a that 

is also expressed between vasa recta of the kidney (Angelow 2008). Additionally, at least 

within the kidney it appears that there exist two isoforms of the ZO-1 protein, being either 

positive or negative for an 80 amino acid alpha motif (Anderson 1993). While the epithelial 

cells and parietal cells of the Bowman’s capsule express the α+ isoform the slit-diaphragm 

and endothelial cells to express the α isoform.  

A search of the literature found two papers in which they also show that the α 

isoform is expressed in the endothelium of the lung as well.  However, research into the 

specific endothelial tight junction complex appears to be limited. The research that has been 

done into the endothelial tight junctions has identified Claudin-5 as a key component of 

vascular tight junctions (Escudero-Esparza 2011). Claudin-5 has been shown to be 

dysregulated in gliomas (Karnati 2014), in the blood-brain barrier in brain metastasis 

(Avraham 2014), and in lung pathologies such as acute lung injury leading to pulmonary 

edema (Chen 2013). It has also been shown to be found in the endothelial cells of the 

kidneys (Morita 1999). A 2014 study by Camire et al showed that when brain endothelial 

cells are treated with 3-chloropropanediol there is a loss of tight junctions (Camire 2014). 

Using a time course post-treatment, they showed that Claudin-5 expression goes down 90 

minutes after exposure, but returns to normal levels after 120 minutes. By using PI3K and 

AKT inhibitors they determined that the PI3K pathway is predominantly responsible for 

Claudin-5 expression in brain endothelial cells. These findings implicate Claudin-5 as a key 

regulator of vascular permeability in multiple organs.  

While significantly more characterization of the differences in endothelial tight 

junctions is required between each organ, there does appear to be organ specific 

endothelial tight junction complexes regulating organ vasculature.  
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 Wound Healing, Cancer and Fibrosis 

 In 1986, the researcher credited with the discovery of VEGF, Dr. Harold Fisher 

Dvorak wrote that “tumors are wounds that do not heal” (Dvorak 2015). The 

histopathological similarities between tumors and the wound healing process led him to this 

statement that has been used ever since. Since this declaration significant biochemical, 

biophysical and histological research has indeed shown that wound healing, pathological 

wound healing (fibrosis), and tumorigenesis have significant similarities (Arwert 2012). 

 The wound healing process is a well-characterized process that can be broken down 

into four overlapping phases that begin at differing times post tissue insult. The process 

begins with hemostasis and inflammation in which the body ensures the prevention of blood 

loss through the secretion of clotting factors such as Von Willibrand factor, and the 

recruitment of immune cells to the location of damage which are the first two steps. The 

third phase is marked by proliferation with increased angiogenesis to revascularize the 

wounded area and an increase in myofibroblasts to close the wound. The final stage is 

called granulation in which the deposition and cross-linking of collagen to replace the 

functional epithelial tissue that was damaged by the insult occurs (Gurtner 2008). The 

deposited collagen tissue cannot perform the function of the epithelial tissue that it replaces 

and acts like a scaffold as opposed to performing a parenchymal role. This would be akin to 

an elevator being replaced by building rebar, the elevator no longer works but the building 

stays standing. It is for this reason that skin scars do not grow hair, sweat or tan and is thus 

the prime cause of thermodysregulation in patients with significant skin burns as their 

epithelial tissue that was responsible for thermoregulation has been destroyed and replaced 

with non-functional scar tissue (Church 2006). In the normal wound healing process this 

process is self-regulating and once revascularization and granulation have occurred the 
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pro-wound healing factors are downregulated and the process resolves (Gurtner 2008). In 

the case of fibrosis and tumorigenesis these factors are constitutively upregulated and 

overexpressed leading to a self-perpetuating wound healing process and thus the excess 

deposition of collagen tissue, continued angiogenesis, and the destruction of surrounding 

functional parenchymal tissue. When this occurs in a vital organ, if left unchecked can lead 

to organ failure and death. 

 Given that the varying stages of wound healing involve angiogenesis and the 

proliferation of myofibroblasts, the similarities between fibrosis and tumorigenesis become 

evident (Figure 14A) (Arwert 2012). It is the kinetics that makes the key difference between 

healthy wound healing and pathological fibrosis and tumorigenesis. A 2001 paper by 

Kampfer et al characterized the mRNA expression levels of skin Angiopoietin 1 and 

Angiopoietin 2 in mice with cutaneous wounds and found that after initial injury the levels 

increased, but rapidly declined to basal levels after day 7. Conversely in mouse models of 

diabetes the skin mRNA levels of Angiopoietin 2 did not resolve after day 7 (Kämpfer 2001). 

Fibrosis research has shown that due to the presence of fibrotic tissue in patients with liver 

cirrhosis, chronic gastritis, and other fibrotic disorders predisposes them to the development 

of cancer in the afflicted organ. For example, liver cirrhosis is a significant risk factor for 

hepatocellular carcinoma (Bugianesi 2002). Thus the presence of excess wound healing 

factors promotes the development of tumor growth (Figure 14B, Figure 15).  

 Numerous studies focusing on individual factors increased in the fibrotic environment 

have shown their pro-tumorigenic properties. A prime example of this is Lysyl Oxidase 

(LOX) and its significant increase during fibrosis. Increase LOX during fibrosis occurs as it is 

involved in and necessary for proper cross-linking of newly developed collagen fibers. Dr. 

Janine Erlner published works showing in Bleomycin induced fibrotic lungs and Carbon 
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Tetrachloride induced fibrotic livers there was increased metastatic spread from 4T1 cells to 

those fibrotic organs as compared to their non-fibrotic controls (Cox 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14: A) Diagrammatic comparison between the wound healing process and the process of 

tumor growth and invasion. B) A Comparison between wound healing and cancer. (Arwert, E. N., E. 

Hoste and F. M. Watt (2012). "Epithelial stem cells, wound healing and cancer." Nat Rev Cancer 

12(3): 170-180). Right provided by Nature Publishing group.  
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Furthermore, they showed that high levels of secreted LOX from primary tumors alters the 

environment of organotropic organs such as the bone to develop a pre-metastatic niche 

(Cox 2016). They also found that secreted LOX binds to fibronectin in the lungs as similar to 

their bone findings prepares the lungs soil for seeding from the primary tumor. LOX is one 

of many pro-tumorigenic factors that have been published showing similarities between the 

fibrotic environment and the tumor microenvironment (Cox 2016). 

 

  

 

 

  

 

 

 

 

 

 

Summary 

  

Figure 15: Table showing the cytokines implicated in both wound healing and in the cancer growth 

and development. (Arwert, E. N., E. Hoste and F. M. Watt (2012). "Epithelial stem cells, wound 

healing and cancer." Nat Rev Cancer 12(3): 170-180). Right provided by Nature Publishing group.  
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Despite the fact that metastasis is the primary cause of mortality in patients with a 

cancer diagnosis, there are limited therapies to treat metastatic disease. Even armed with 

the knowledge of where specific tumors are likely to spread to we still have limited 

knowledge about the etiology of organotropism and why certain organs are more 

susceptible to metastatic spread over others, for example why are the lungs a common site 

of metastasis while the kidney is rarely ever found to have metastatic disease. Both are 

major sites of blood flow, have significant capillary coverage, high perfusion rates and 

require the diffusion of macromolecules across the endothelial barrier for function. 

Furthermore, direct injection to bypass the endothelial barrier or mechanical manipulation of 

systemic vasculature has shown that cancer cells can grow in non-organotropic 

parenchyma if able to reach that environment. This clearly indicates that if cancer cells are 

able to cross the endothelial barrier that they will likely able to grow in the parenchymal 

space of whatever organ they disseminated to. This appears to be a contradiction to 

Paget’s generally accepted seed-and-soil hypothesis.  

 Rather than seemingly contradicting Paget or Ewing’s hypothesis, an amalgamation 

of the two theories might help to explain metastatic organotropism. The vascular system is 

not a homogenous system, and it is clear that the vasculature of different organs is not only 

physically different but may also respond differently to the same secreting cytokines. This 

would indicate that metastatic organotropism is likely due at least in part to the 

heterogeneous nature of organ specific vasculature and its response to circulating pro-

tumorigenic factors.  

Such pro-tumorigenic factors can be found in the wound healing process, but are 

found both in excess and for chronically longer durations post insult during fibrosis, 

tumorigenesis and other pathological states. During these pathological states these factors 
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are secreted into the circulation and will thus have systemic effects. Cytokines once in 

circulation will make direct contact with the luminal side of the endothelium prior to any 

other cell type. Given that these cytokines are pro-angiogenic and are by all essential 

reasoning bombarding the endothelium, one would expect there to be wide ranging 

systemic organ damage in any disease which leads to excess circulating fibrotic or 

tumorigenic factors. However, that is not the case. For example, in patients with Sepsis, 

who have increased levels of circulating Angiopoietin 2, TNFa and TGFb, all factors 

associated with pro-fibrosis and pro-tumor growth, the lungs are predominantly effected 

leading to an increase in pulmonary edema due to vascular leakage. While some other 

organs are also affected, not every organ appears to have vascular alterations in these 

circumstances leading to further evidence that the endothelial responses to cytokines are 

organ specific.  

 Here we hypothesize that organ specific vasculature responds differently to the 

same cytokines in circulation. Thus in the presence of tumor or fibrosis secreted cytokines 

only certain organs would show altered vasculature that increases their vascular 

permeability and increases the likelihood of paracellular transendothelial migration of 

circulating tumor cells. By inducing fibrosis in both organotropic lungs and non-organtropic 

kidneys in mouse models of breast cancer we can determine whether the pro-tumorigenic 

fibrotic environment is capable of redirecting metastasis to a non-tropic organ. Furthermore, 

this allows us to determine the differential organ specific vascular response of excess 

secreted cytokines from fibrosis or tumors.  
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Chapter 2 Material and Methods 
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Anesthesia: Mice will be anesthetized with Ketamine/Xylazine (Ketamine (100mg/kg body 

weight); Xylazine (10g/kg body weight)). The duration of the anesthesia is 30-60minutes.  

Analgesia: Bupreorphine will be given subcutaneously (0.1mg/kgBW in 100ul PBS) prior to 

skin incision, then at 12 and 24 hours after operation.  

Wound Induction: The wound induction is a unilateral 8mm dorsal wound that resolves in 

10-17 days. The right dorsal aspect of the mice will be shaved and the skin prepped with 

betadine and alcohol. Approximately 1cm right from the dorsal central axis of the mouse a 

Miltex 8mm Sterile Disposable Biopsy Punch will be used to remove the dermal layer down 

to the peritoneum, without interrupting the peritoneum. The wound will be carefully cleaned 

with iodine post surgery and the mouse monitored for signs of infection.  

Bleomycin: Intratracheal Bleomycin injections will be used to induce lung fibrosis. Place the 

mouse supine on a surgical board. Elevate the surgical board to at least a 45-degree angle 

so that the mouse’s head is elevated above its thorax. A 1 cm incision will be made 

vertically along the trachea ensuring clear visualization of the muscle layer. The 

Sternohyoid muscles will be gently displaced to reveal the trachea. Using fine tip tweezers, 

the tracheal peritoneal layer will be removed so as to visualize the tracheal cartilage rings. 

Using a 28-gauge needle 100ul of Bleomycin (15 units) will be injected between two 

cartilage rings. Confirmation of a successful injection will be visualized by a momentary 

pulmonary distress. Pulmonary distress should resolve within 5-10 seconds. The 

Sternoyhoid muscles will be replaced and the epidermal layer will be sutured with 

continuous non-absorbable sutures. The wound will be cleaned and the mice monitored.  
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UUO: UUO or unilateral ureteral obstruction (mild to severe fibrosis that does not resolve, 

the mice are euthanized at 10 days’ post UUO). One 1.5 cm long longitudinal incision will be 

made on the abdomen, approximately at 0.5cm left of the nipples on the left flank of the 

animal (starting at the level of the 4th set of nipples and continuing 1.5cm toward the head of 

the animal and will not exceed 1.5cm). The skin will be gently separated from the 

peritoneum to expose the peritoneum. A second incision will be made in the peritoneum, 

longitudinally starting at the level of the 4th nipple and continuing 1cm toward the head of 

the animal, not to exceed 1cm in total length. The abdominal cavity is now open and the 

organs gently moved to expose the ureter. The ureter is then ligated with non-absorbable 

nylon string at 0.5 cm below the kidney. The peritoneum is then sutured with simple 

interrupted absorbable sutures while the skin is sutured with simple interrupted non-

absorbable sutures or surgical staples. Control mice include sham operation, which consists 

of exposing the ureter and closing peritoneum and skin.  

Breast Pad/ Mammary Gland Injection: Bilateral incisions will be made on the abdomen of 

the mice without interrupting the peritoneum.  Each incision will begin towards the hind leg 

of the animal between the 4th and 5th sets of nipples and extend towards the head of the 

animal no more than 1.5 cm. The skin will then be gently separated from the body cavity in 

order to expose the breast pad/mammary fat glands that are situated on the underside of 

the skin. Tumor cells (500,000 cells/20ul PBS per breast pad) will be injected into each 

breast pad using a Hamilton syringe fitted with a 25G needle. The abdominal incision will be 

closed using either simple interrupted vicryl sutures with non-absorbable nylon string or 

surgical staples.  
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Retroorbital Injection: Cell injections will be in 100ul volume and 500,000 cells in PBS 

retroorbitally. 

Breast Pad/Mammary Gland Injection+No Surgery/Wound/Sham/UUO: Mice will be 

implanted with 4T1 breast cancer cells into the mammary fat pads. When the tumors reach 

500mm3, cohorts will receive 1) no treatment, 2) Wound Induction, 3) Sham surgery, 4) 

UUO surgery, 5) Sham+IgG, 6) UUO+IgG 7) Sham+anti- Angiopoietin 2, or 8) UUO+anti-

Angiopoietin-2. All Mice will be sacrificed 10 days following surgery including control mice.  

Retroorbital Injection+No Surgery/Wound/Sham/UUO: Mice will be retroorbitally injected 

with 4T1 breast cancer cells. On the same day the mice will be also receive 1) no treatment, 

2) Wound Induction, 3) Sham surgery, 4) or UUO surgery. All Mice will be sacrificed 10 

days following surgery including control mice. 

Retroorbital Injection+Recombinant Angiopoietin 2 Treatment: A cohort of mice will receive 

2 intraperitoneal injections of 100ug recombinant mouse Angiopoietin 2 (7186-AN-025). The 

first injection will be given at day –1; the second injection will be given at day 3. The control 

group will receive PBS only. The mice will be euthanized at day 10. An additional cohort will 

be retroorbitally injected with 500,000 cancer cells at Day 0. The mice will be euthanized at 

day 10.  

Mouse Monitoring: The mice will be euthanized 10 days post wound induction. The dermal 

wound will be monitored daily for infection and 10% weight loss together with significant 

decreased activity/reactivity will be used to determine whether mice require euthanasia 

before the 10-day sacrifice time point. Tumor bearing mice will be monitored daily, tumors 

measured, and tumors necrosis, 10% weight loss together with significant decreased 
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activity/reactivity will be used to determine whether mice require euthanasia before the 10-

day sacrifice time point. All mice be euthanized upon tumor size reaching 1500mm3. 

Tissue collection during euthanasia: 1 hour prior to euthanization mice will be injected with 

FITC-Dextran 70,000kD at 100 mg/ml (46945). Mice will be anesthetized with 

Ketamine/Xylazine and cervically dislocated after collection of whole blood.  

Retroorbital Whole Blood Collection: Utilizing a glass pipet, 10ul of heparin will be collected 

into the pipet. The tip of the glass pipet will be inserted into the medial canthus of the eye 

under the nictitating membrane. Light pressure will puncture the sinus membrane and blood 

will begin to flow into the glass pipet.  

Tissue Collection: Post cervical dislocation, the mouse will be secured to a dissection board 

so its abdomen is exposed, and sprayed lightly with 75% ethanol to wet the fur and skin to 

prevent contamination. Perform an incision 1cm above the central axis of the genitalia, then 

continuing towards the mouse’s head will expose the abdominal cavity and the rib cage. 

The femoral artery will be perforated to allow blood to flow. Using surgical scissors, the rib 

cage will be removed exposing the lungs and heart. A 10ml syringe with PBS and a 20-

gauge needle will be inserted into the left ventricle of the heart and gentle pressure will be 

placed on the syringe. Successful perfusion will be evident by clear PBS flowing from the 

femoral perforation, and paling of the liver, kidneys, and lungs.  

Formalin Fixed Paraffin Embed: All tissues for FFPE will be collected into tissue cassettes 

and placed in formalin jars. They will be processed overnight and embed in paraffin no more 

than 2 days later.  
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Snap Frozen Tissue: All snap frozen tissue will be immediately placed in a 1.5ml Eppendorf 

Tube and put into liquid nitrogen. All snap frozen samples will be stored at -80C.  

Lungs: The left lung lobe will be collected for FFPE. The right superior and inferior lobes will 

be collected for OCT. The middle and post-caval lobe will be snap frozen.  

Liver: The median lobe will be collected for FFPE.  

Kidney: The fibrotic and contralateral kidney will be removed and separated into anterior 

and posterior sections using a surgical blade. The anterior of each kidney will be collected 

for FFPE. The posterior kidney will be separated into apical and basilar sections. The apical 

section will be processed for OCT and the basilar will be snap frozen.  

Tumor: Tumors will be weighed upon resection. Tumors will be separated into anterior and 

posterior sections using a surgical blade. The anterior tumor will be collected for FFPE. The 

posterior tumor will be separated into proximal and distal sections. The proximal tumor will 

be processed for OCT. The distal tumor will be snap frozen. Sections of all remaining tissue 

will be collected for FFPE and snap frozen tissue.  

Angiopoietin 2 ELISA: Whole blood will be spun down at 1500rpm for 5 minutes at 4C. 

Serum will be transferred to another 1.5ml Eppendorf tube. Angiopoietin-2 ELISA will be 

performed on serum using Abcam Angiopoietin-2 Mouse ELISA kit (ab171335).  

Metastasis Analysis: At least 2 5um thick representative sections of the lungs from each 

mouse will be stained with H&E. These slides will be scanned using Panoramic 250 Flash 

II. Each slide will be analyzed for metastasis on Panoramic Viewer. Metastatic burden will 

be calculated by dividing the area of metastasis by the total area of the lung. Differential 
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analysis will performed using Prism. Statistical analysis will be a unpaired 1-Way Anova 

comparing the mean of each group to the mean of each other group at 95% confidence to 

determine statistical significance.  

Immunofluorescence: 4 images will be taken per slide. Using Zeiss Zen Blue software, a 10 

by 10 grid will be overlayed on the image. This grid will allow us to determine the percent of 

fluorescence positivity in each image taken based on the analysis we are performing. For 

analysis requiring visualization of structural components a brightfield image will also be 

used to determine specific histological structures. Statistical analysis will be a unpaired 1-

Way Anova comparing the mean of each group to the mean of each other group at 95% 

confidence to determine statistical significance.   

Quantitative (Real-Time) Polymerase Chain Reaction (qPCR): RNA will be isolated from 

snap frozen tissue using traditional Trizol extraction methods. RNA will be measured using 

Nanodrop for purity. cDNA will be synthesized using High-Capacity cDNA Reverse 

Transcription Kit (4368814). qPCR will be performed using SYBR Green Real-Time PCR 

Master Mixes (4367659) on QuantStudio™ 7 Flex Real-Time PCR System from 

ThermoFisher.   
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Fibronectin F GCTCAGCAAATCGTGCAGC 

Fibronectin R CTAGGTAGGTCCGTTCCCACT 

Col1α1 F GCTCCTCTTAGGGGCCACT 

Col1α1R CCACGTCTCACCATTGGGG 

LOX F TTCTTCTGCTGCGTGACAACC 

LOX R AATAGGGGTTGTCGTCGGAGT 

TNFa F CCAGTGTGGGAAGCTGTCTT 

TNFa R AAGCAAAAGAGGAGGCAACA 

FGF F GCGACCCACACGTCAAACTA 

FGF R TCCCTTGATAGACACAACTCCTC 

VEGF F AAAGCCAGCACATAGGAGAGATGAG 

VEGF R CTCGAAGAGTCTCCTCTTCCTTCATG 

Ang2 F CAGCCACGGTCAACAACTC 

Ang2 R CTTCTTTACGGATAGCAACCGAG 

CD31 F TGCACAGTGATGCTGAACAA 

CD31 R CCATGAGCACAAAGTTCTCG 

GAPDH F GCAAGGTGTATGAATCTGTGCT  

GAPDH R TCAAGGTAACAAAGAGTGCCA 

TGFβ1 F CACTGGAGTTGTACGGCAGTG  

TGFβ1 R AGAGCAGTGAGCGCTGAATC 

Tie 2 F 1 GAGTCAGCTTGCTCCTTTATGG 

Tie 2 R 1 AGACACAAGAGGTAGGGAATTGA 

Tie 2 F 2 CGGCAGGTACATAGGAGGAA 

Tie 2 R 2 TCACATCTCCGAACAATCAGC 

 

Statistical Analysis: Data are represented as the mean ±SEM. *p < 0.05, **p < 0.01, ****p < 

0.0001. ns, not significant. Analysis of two samples or indicated by comparison bars was 

performed by Unpaired Student’s T-test. Multiple group analysis was performed using One-

way Anova.  

Cell Culture: Renal and lung endothelial cells were obtained from the laboratory of Dr. 

Isaiah Fidler and cultured as previously described ((Langley and Fidler 2003). For 
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Angiopoietin 2 stimulation, 1ug of murine recombinant Angiopoietin 2 (7186-AN-025) was 

added to the culture media for the indicated times. 4T1 cancer cells where tagged with GFP 

and grown to 80-85% confluence. Cells where trypsinized and washed in PBS prior to 

intravenous or orthotopic injection.  

Quantification of metastatic burden and tumor necrosis: Hematoxylin and eosin staining of 

the lung and kidney sections from paraffin-embedded tissue was generated. Image of an 

entire lobe was obtained using the Panoramic 250 Flash III slide scanner. Metastasis were 

identified using via histopathological analysis based on H&E staining and metastatic area 

was quantified using Panoramic Viewer software as a percentage of total lung area. High 

magnification images of the metastatic area are provided for each lung photomicrographs.  

ELISA: Blood was collected at the time of euthanasia and 200ul was spun down at 1500rpm 

for 5 minutes. Serum was separated and stored in -80C. Samples were thawed and 20ug 

was diluted in the sample diluent buffer provided in the Angiopoietin 2 Mouse ELISA kit 

(Abcam ab171335) and the ELISA was then carried out following the manufacturer’s 

directions.  

Western Blot: Cells where grown on 6cm dishes and treated as indicated. Cells were 

washed with PBS and removed from the dish using a cell scraper and transferred to a 1.5ml 

Eppendorf tube. Cells where spun down at 1500rpm for 5 minutes and supernatant 

removed. Cell pellet was resuspended in 200-300ul of RIPA buffer and sonicated every 10 

minutes for 30 minutes at 4C. Lysate was spun at 12,000rpm for 10 minutes and 

supernatant was transferred to a new 1.5ml Eppendorf tube. Protein concentration was 

measured using BCA assay reagents (Pierce). Western blot was run using standard BioRad 

protocol. Membranes were blocked in 5% milk in PBS for 1 hour and incubated in Actin 
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(1:1000 Cell Signaling 4970), pTie2 Tyr1108 (1:100 Thermo Fischer PA5-38339) and pERK 

(1:500 Cell Signaling 9101) overnight in 4C. Membranes were washed and incubated in 

secondary HRP conjugated antibody and exposed. 

Immunofluorescence/ Immunostaining: Harvested tissues, tumor, lungs, and kidneys, and 

skin were fixed in 10% neutral buffered formalin, dehydrated and embedded in paraffin. For 

Sirius Red the deparaffinized tissues were stained in hematoxylin for 8 minutes, washed for 

10 minutes and then stained in Sirius Red solution for 1 hour. Slides where then scanned 

using Pannoramic 250 Flash III slide scanner and quantified on Phostoshop software using 

a 10 by 10 grid to count positive areas for ≥3 fields/tissue per x20 image. Alternatively, 

deparaffinized tissues were incubated in 10mM citrate buffer (ph 6.0) for 15 minutes at 95C 

prior to blocking with 4% Cold Water Fish Gel in PBS. Tissues where incubated overnight in 

following blocking in αSMA(1:500 Sigma C6198), Claudin 5 (1:100 Thermo Fischer 35-

2500), Ki67 (1:500 Abcam ab15580), and Isolectin B4 (1:500 Thermo Fischer I21411) 

followed by secondary fluorescent antibodies. Slides were mounted with DAPI to label 

nuclei. Positive staining was quantified in ≥3 visual fields/tissue at x63 or x100 using 

Photoshop software by placing a 10 by 10 grid to count positive areas or costaining. 

Statistical analysis was done using the average staining per tissue. Stainings were 

visualized on a Zeiss microscope. For the cell culture staining cells where grown on 8 well 

chamber slides and treated as indicated with either PBS or murine recombinant 

Angiopoietin 2. Cells where washed in PBS and fixed for 10 minutes in 4% 

paraformaldehyde then blocked for 1 hour in 4% Cold Water Fish Gel in PBS. Cells where 

incubated overnight in ZO-1 (1:100 Thermo Fischer 61-7300) and Phalloidin (1:1000 

Thermo Fischer T7471).  
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Microarray analysis and quantitative real time PCR analysis: Total RNA was isolated from 

healthy and wounded skin, healthy and fibrotic lungs and healthy and fibrotic kidneys Trizol 

(Invitrogen) and RNA was extracted according to manufacture’s instructions.. An equal 

amout of RNA was submitted from each cohort (n=3) to the Microarray core facility at MD 

Anderson. Microarray analysis was performed using Mouse Ref8 Gene Expression 

Beadchip (Illumina) software. Ingenuity Pathway Analysis (IPA) was performed on the 

microarray data set, with a threshold of 1.2 and 1.5 fold. For RT PCR analyses, tissues 

were homogenized in Trizol (Invitrogen) and RNA was extracted according to manufacture’s 

instructions. cDNA was generated using High Capacity cDNA Reverse Transcriptase Kit 

(Applied Biosytems). Gene expression was determined using Applied Biosystems 7300 

Sequence Detector System and SYBR green as the fluorescence reporter. Measurements 

were standardized to the housekeeping gene (CD31 or GAPDH).  
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Chapter 3: Kidney and Lung Fibrosis express similar pro-tumorigenic factors 

Fibrosis and the tumor microenvironment have been shown to share a number of 

biochemical and biophysical similarities including secreted cytokines. Previous research has 

shown that fibrotic environments are pro-tumorigenic for primary tumor growth and can also 

enhance metastatic growth to organotropic organs. Furthermore, the fibrotic environment 

and the pre-metastatic niche have been also been shown to be similar and the pre-

metastatic niche has been implicated as a potential driving factor towards organotropism. 

The majority of metastasis and organotropic research has been focused on the tropic 

organs while limited research has focused on the organs that rarely develop metastasis. 

Here we choose to focus not only on the tropic organs within breast cancer, but to also 

determine if we created a fibrotic, and thus pro-tumorigenic, pre-metastatic niche 

environment in a non-organotropic organ could we re-route metastasis to that organ. Given 

previous publications implicating the increased levels of TGFβ, LOX, TNFα, Collagen, 

αSMA among other factors in the fibrotic environment, tumor microenvironment and pre-

metastatic niche, we aimed to determine whether this was sufficient to re-route metastasis 

to a non-organotropic organ.  

For the purposes of this study we choose to utilize two well-established mouse 

models of metastatic breast cancer. The mouse derived 4T1 mammary fat pad cancer cell 

line and the MMTV-Pymt models have both been shown to metastasize to multiple organs 

including the lung, liver and brain with similar tropism to human breast cancer. The 

advantage of these models is that they both have consistent temporal tumor growth rates. 

This allows for the induction of specific treatments at known tumor sizes providing for a 

consistency across the two models. Furthermore, both of the models are in the BALB/c 

background allowing for the comparison of the two different breast cancer models. Currently 
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there are no studies utilizing these models to determine whether they can be rerouted to 

metastasize to a non-tropic organ. It has been shown that direct injection of 4T1 cells into 

the kidney can form a tumor within the cortex indicating that if capable of entering the 

parenchymal space of the kidney these cells would be capable of forming a metastatic 

nodule.  

To elucidate the contribution and control of the fibrotic environment on metastasis 

we evaluated three models of tissue damage in 4T1 and MMTV-Pymt tumor bearing mice. 

By inducing a cutaneous wound, lung fibrosis and kidney fibrosis we can observe a normal 

resolving wound, an organotropic fibrosis and a non-organotropic fibrosis effect on 

metastatic spread in breast cancer. Given that clinically surgery, a wound, has not been 

shown to enhance metastasis and other research has indicated that pro-fibrotic factors go 

down by day 7 in normal resolving wounds in mice the wound will act as the control for 

normal kinetics. Comparison of the wound to the lung fibrosis and kidney fibrosis allows us 

to compare acute normal wound versus chronic fibrotic damage. Utilizing Bleomycin to 

induce lung fibrosis we aim to develop a pro-tumorigenic environment in an organotropic 

organ, while surgically induced kidney fibrosis will act as the non-organotropic organ.  

Based on the pro-tumorigenic and pro-metastatic nature of the fibrotic environment 

and its secreted cytokines, we hypothesized that both lung fibrosis and kidney fibrosis 

would have the necessary factors to enhance metastasis in a systemic manner. In 

accordance with previous studies we expect to see an increase in metastasis to the fibrotic 

lung, and given the induction of a similar pro-tumorigenic environment in the fibrotic kidney 

we would hypothesize that this would induce metastatic growth in the damaged non-

organotropic organ.  
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 Histopathological characterization of cutaneous wound, lung fibrosis and kidney 

fibrosis shows increased collagen deposition and aSMA+  

To understand the role of the fibrotic environment in breast cancer metastasis we 

began by evaluating and comparing the pro-tumorigenic factors expressed in a resolving 

wound, lung fibrosis and kidney fibrosis. Cutaneous wound skin at day 6 post injury (an 

open wound), Bleomycin induced fibrotic lungs, and surgically induced fibrotic kidneys 

where harvest at day 10 post insult. The insulted organs where each stained with H&E, 

Sirius Red and immunofluorescently stained with aSMA. Morphometric analysis for Sirius 

Red and aSMA was performed comparing each fibrotic organ with its healthy control. Sirius 

Red is a cationic dye that binds by reacting to the basic groups in collagen. The dye binds 

to the collagen molecules in a parallel orientation, which results in an increased bifringency 

and is counterstained with pictoric acid and hematoxylin for nuclear stain. An increase in 

positive red area indicates an increase in collagen. There is a significant increase in Sirius 

Red positive areas in the skin wound at day 6 and both lung and kidney fibrosis (Figure 

16B,D,F,H). Additionally, aSMA, a marker for the collagen depositing myofibroblasts is also 

significantly increased in the day 6 wound, and lung and kidney fibrosis. (Figure 16C, 

E,G,I). Taken together these results indicate that an open wound, lung and kidney fibrosis 

all show increases in the production of fibrotic tissue.  
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Figure 16: Histology of fibrosis in skin, lung and kidney. A) H&E of healthy skin, wounded skin, 

healthy lung, fibrotic lung, healthy kidney, and fibrotic kidney. B) Sirius Red of healthy skin, 

wounded skin, healthy lung, fibrotic lung, healthy kidney, and fibrotic kidney. C) aSMA 

immunofluroscence of healthy skin, wounded skin, healthy lung, fibrotic lung, healthy kidney, and 

fibrotic kidney. D) Quantification of skin Sirius Red. E) Quantification of skin aSMA. F) Quantification 

of lung Sirius Red. G) Quantification of lung aSMA. H) Quantification of kidney Sirius Red. I) 

Quantification of kidney aSMA. Scale bar=25um.Data are represented as the mean ±SEM using 

Student’s T-test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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Fibrotic environments show sustained increased chronic expression of  

pro-tumorigenic factors 

 Given that healthy wounds begin resolving and are typically fully closed in healthy 

mice by day 10-17, versus fibrosis which persists beyond day 10 post insult we performed 

Illumina gene expression arrays on skin at day 6 and day 17 post injury, and on fibrotic and 

healthy lungs and kidneys. Using previous publications, we compiled a list of genes shown 

to be present in the pre-metastatic niche and to be pro-tumorigenic. The open wound and 

closed wound were normalized to healthy unwounded skin, while the fibrotic lung and 

fibrotic kidney where normalized to a healthy respective organ. By comparing the differential 

gene expression levels in a healthy open wound versus a healthy closed wound it is evident 

that the pro-tumorigenic genes do not significantly increase their expression and/or return to 

basal levels once the wound is closed. Conversely, when both the fibrotic lung and fibrotic 

kidney are compared to their respective healthy control organ at day 10 post insult a 

number of genes associated with pro-tumorigenic growth are still upregulated (Figure 17). 

To confirm the chronic upregulation we performed qPCR on select genes to confirm their 

upregulation at day 10 in the kidney fibrosis models (Figure 18). 

 The sustained increase in similar pro-tumorigenic factors in the fibrotic lung and 

kidney versus the resolved factors in the wound will enable us to test the effects of forming 

a pro-tumorigenic environment in the tropic and non-organotropic organ.  
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 Figure 17: Increase in expression of genes 

associated with pre-metastatic niche in the fibrosis 

environment. Probes fluorescent units are shown in 

log scale. N=3 for each group.  

 

 

Healthy 

Skin

Open 

Wound

Closed 

Wound

Healthy 

Lung

Fibrotic  

Lung

Healthy 

Kidney

Fibrotic 

Kidney

Lox 3.07516 2.99499 3.51942 3.19066 3.96621 3.67244 4.07286

S100a9 2.52799 2.95912 2.47023 2.96241 3.57985 3.51871 3.91676

Col2a1 0.82962 1.28102 1.07378 1.01479 2.87156 2.2508 3.89936

Egfr 1.48372 1.31751 1.54426 1.14661 2.82625 2.25604 3.85253

Tnfsf11 1.11608 1.32976 1.31108 1.98621 2.57638 3.19077 3.80382

Col4a5 2.42596 2.17558 2.09437 1.92902 2.5956 2.78117 3.65615

Fn1 1.74539 1.64242 2.16098 2.45451 3.01414 3.56865 3.64291

Tnc 1.12137 1.63376 1.3383 1.17239 2.46639 2.56055 3.62416

Fgf5 1.70817 1.62636 2.21022 2.03669 2.83057 3.22394 3.57394

Col4a4 1.18115 0.79161 1.24613 3.24429 3.1767 3.71251 3.54702

Col2a1 1.26176 1.32693 1.07301 1.54373 2.37888 3.14634 3.48971

Fgf1 1.40207 1.1788 1.22497 1.36244 2.52038 1.86251 3.44674

Tnc 2.11921 2.68497 2.61349 3.31644 3.0477 3.57746 3.4245

Pgf 1.09858 1.19162 1.28294 1.41341 2.43486 1.8195 3.36082

Bmp1 3.32336 3.40661 3.41699 1.42514 2.32591 2.37397 3.23717

S100a8 3.06729 3.46458 3.00079 2.18961 2.87175 2.93829 3.12252

Tnc 0.5744 0 0 2.75454 2.61335 3.16644 3.05962

Mmp9 2.09755 2.48452 2.03868 2.82927 3.04739 2.73911 3.00835

Vcam1 0 0.95053 0.84107 2.16958 3.06282 2.91328 2.95902

Egfr 2.38 2.33424 2.42526 3.03257 2.7595 3.19395 2.95499

Bmp1 2.67688 2.83847 3.04746 3.05755 2.84022 2.65884 2.85478

Col3a1 3.15878 2.90131 3.4211 2.84716 2.50255 2.55714 2.76221

Vegfa 2.75737 2.83327 2.53691 2.58851 2.68738 2.9303 2.70316

Mmp2 3.87634 3.93833 4.10482 1.50605 2.39911 2.48027 2.69469

Col1a1 3.87219 3.82965 3.90811 1.58152 2.33967 2.41593 2.68331

Fn1 3.0167 3.20661 3.48508 1.33133 2.10299 2.08419 2.67964

Col1a2 2.52293 2.66912 2.907 2.61653 2.08288 1.94897 2.62145

Icam1 2.59898 2.66762 2.77833 2.56603 1.93394 2.62557 2.56651

Hif1a 2.19976 1.81598 2.11418 2.27009 2.05307 1.85555 2.47642

Csf1 1.9531 2.19934 2.18274 1.19512 1.58642 1.72339 2.46989

Hgf 1.05806 1.32256 1.35914 1.63885 2.28366 2.48026 2.4544

Tnf 1.62469 1.39708 1.43867 1.43708 1.40927 1.76283 2.37243

Timp1 2.25759 2.78318 2.84318 2.24454 2.11981 2.29104 2.30543

Bmp1 2.72837 2.89092 3.08015 2.46205 2.272 2.18203 2.30318

Csf3 1.29238 1.42205 1.40061 1.46876 1.86449 2.26442 2.30228

Egfr 3.30709 3.09667 3.12687 1.08085 1.37059 1.68059 2.26762

Col4a4 1.57483 1.11538 1.53388 1.24054 1.27396 1.50652 2.25393

Col3a1 2.85899 2.38077 2.10783 2.43231 2.15422 2.11218 2.16594

Tgfb1 1.96307 2.30993 2.25692 2.11976 1.8621 2.49792 2.13853

Tnc 1.17956 1.4138 0.7979 1.00206 1.2666 1.60306 2.09738

Cxcl12 2.7264 2.76148 2.80516 1.27767 1.92381 2.04381 2.08667

Vegfa 2.21878 2.40585 2.09912 2.33723 2.08814 1.9554 1.97809

Col4a1 3.41646 3.31531 3.65304 1.45265 1.49612 1.76201 1.91993

S100a4 2.13106 2.05779 2.27296 1.15885 2.05593 2.18249 1.91554

Tnf 1.27524 1.26078 1.06739 1.45757 1.44886 1.59642 1.88886

Col4a5 2.01362 1.92238 1.993 1.12722 1.39618 1.65973 1.79192

Col4a6 1.03995 1.05944 1.03041 1.14556 1.3985 1.48253 1.71283

Hgf 1.03937 0.98032 1.06239 1.1566 1.38243 1.60542 1.65289

Cxcl12 2.55536 2.7018 2.51801 1.29762 1.42976 1.67404 1.64661

Col4a3 1.38324 1.24115 1.35518 1.05609 1.14629 1.5022 1.60297

Fn1 0.64991 1.08793 1.21446 0.72173 1.11748 1.49549 1.60108

Cxcl12 3.19471 3.22633 3.1383 1.25097 1.28119 1.59152 1.59509

Tnc 2.02675 2.63619 2.49761 1.34475 1.30371 1.56971 1.5896

Col4a2 3.14479 3.28968 3.41125 1.30921 1.29608 1.51072 1.58268

Egfr 2.27099 2.27177 2.26764 1.18884 1.24272 1.5265 1.58082

Fgf1 2.00836 1.8891 1.98608 0.29011 1.10437 1.55939 1.56979

Timp1 2.15812 2.78285 2.79905 1.22848 1.20551 1.54661 1.54392

Hif1a 0 0.97212 0 1.11172 1.30132 1.57073 1.50972

Vcam1 1.90279 2.29729 2.55015 1.18701 1.05701 1.61636 1.48801
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Figure 18: Fold Change expression for genes associated with the pre-metastatic niche and tumor 

microenvironment in kidneys of indicated groups. The fold change in TGFB1, Fibronectin, Col1a1, 

LOX, TNFa, FGF and VEGF in healthy kidneys, contralateral kidneys, fibrotic kidneys and the 

kidneys of mice treated with bleomycin. Normalized to GAPHD. Data are represented as the mean 

±SEM using One-Way Anova for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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Chapter 4: The effect of organotropic and non-organotropic fibrosis on breast 

cancer metastasis 

To test the capacity of pro-tumorigenic fibrosis to enhance and/or reroute metastatic 

disease we induced cutaneous skin wound, lung fibrosis, or kidney fibrosis in mice that 

received 1) orthotropic 4T1 injections 2) intravenous 4T1 injections 3) or MMTV-Pymt tumor 

bearing mice. By injecting 4T1 cancer cells orthotopically and utilizing the MMTV-Pymt 

model we are able to model the spread of metastatic disease from the primary tumor 

following the metastatic cascade. The use of the intravenous model allows us to remove 

any influence from the primary tumor and to test the effects of fibrosis on both vasculature 

and extravasation and on other host organs.   

The effect of cutaneous skin wound on breast cancer metastasis 

A long-standing concern within the surgical community has been the effect of 

surgery on the spread of metastatic disease. Although there is limited evidence to show that 

surgical wounds promote metastatic disease, and given that pro-tumorigenic factors from 

wounds resolve after a few days we opted to determine whether induction of a cutaneous 

wound could have any effects on the spread of metastatic disease. Mice where initially 

injected bilaterally with 4T1 cancer cells into their mammary fat pads and monitored for 

tumor growth. Once the 4T1 tumors had reached a combined growth of 500mm3 the mice 

where anesthetized and an 8mm dorsal non-peritoneal penetrating wound was surgically 

induced. The same progression was used for the MMTV-Pymt with mice receiving a wound 

once the combination of their tumors had reached a combined 500mm3. Once the tumors 

reached a combined 1500mm3 the mice were euthanized and tissues collected for analysis. 

Additionally, we injected 4T1 cancer cells intravenously and induced wound on the same 

day. Given the propensity for both these models to metastasize to the lungs we primarily 
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focused our metastatic analysis on the pulmonary system. We also collected the kidneys 

from all mice to analyze for potential metastatic spread and to compare to the other cohorts 

with fibrotic lung and kidney. 

To compare metastatic spread in mice with and without cutaneous wound we 

performed H&E staining on the lungs and kidneys and counted metastasis microscopically. 

As hypothesized, there was no significant difference between metastatic spread to the lungs 

in the mice with and without cutaneous wound in either the 4T1 (Figure 19E, F, G) model or 

the MMTV-Pymt model (Figure 19A, C, D). Similarly, we noted no difference in colonization 

of the lungs in the intravenous 4T1 with or without cutaneous wound (Figure 19I, K, L). 

There was no metastatic growth or colonization of the kidneys in any these mice (Figure 

22A, B). There was no change in the growth rates of the tumors (Figure 19B, I).  
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Figure 19: Metastatic Analysis in Cutaneous Wound A) Histological representation of MMTV-Pymt 

metastasis with and without cutaneous wound. B) Pymt Tumor growth curve C) Metastatic and D) surface 

lung nodule quantification of MMTV-Pymt mice with and without cutaneous wound. E) Histological 

representation of 4T1 orthotopic metastasis with and without cutaneous wound. F) Metastatic, G) surface 

lung nodule quantification and H) CTC analysis of 4T1 orthotopic mice with and without cutaneous wound. 

I) Histological representation of 4T1 IV metastasis with and without cutaneous wound. J) 4T1 Orthotopic 

growth curve K) Metastatic and L) surface lung nodule quantification of 4T1 IV mice with and without 

cutaneous wound. N=6 for each group. Scale bar=25um. Data are represented as the mean ±SEM using 

Student’s T-test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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The effects of lung fibrosis on breast cancer metastasis 

Using the same methodology as in with the cutaneous wound we induced lung 

fibrosis in 4T1 orthotopic, 4T1 intravenous, and MMTV-Pymt mouse models of breast 

cancer either once the tumors had reached 500mm3 or on the same day as 4T1 intravenous 

injection. These mice were euthanized 10 days post intratracheal Bleomycin lung fibrosis 

inducing surgery. The 10 days euthanization was both for humane reasons and also due to 

the rapid progression of metastatic disease in these mice. Analysis of these mice revealed 

significant spread of 4T1 (Figure 20 E, F, G) and Pymt (Figure 20 A, C, D) metastasis and 

colonization (Figure 20I, K, L) of the lungs in mice with lung fibrosis as compared to mice 

that received only intratracheal PBS injections. None of these had metastasis to their 

kidneys (Figure 22) or changes to their tumor growth (Figure 20B, J). The increased 

metastasis and colonization of the fibrotic lungs in these mice indicates that the pro-

tumorigenic fibrotic environment is able to enhance metastatic spread to organotropic 

organs. These results reflect previous publications and support the role of the 

aforementioned pro-tumorigenic factors in promotion of metastasis.  
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Figure 20: Metastatic Analysis in Lung Fibrosis A) Histological representation of MMTV-Pymt metastasis with 

and without lung fibrosis. B) Pymt Tumor growth curve C) Metastatic and D) surface lung nodule quantification 

of MMTV-Pymt mice with and without lung fibrosis. E) Histological representation of 4T1 orthotopic metastasis 

with and without lung fibrosis. F) Metastatic, G) surface lung nodule quantification and H) CTC analysis of 4T1 

orthotopic mice with and without lung fibrosis. I) Histological representation of 4T1 IV metastasis with and 

without lung fibrosis. J) 4T1 Orthotopic growth curve K) Metastatic and L) surface lung nodule quantification of 

4T1 IV mice with and without lung fibrosis. N=6 for each group. Scale bar=25um. Data are represented as the 

mean ±SEM using Student’s T-test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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The effects of kidney fibrosis on breast cancer metastasis 

To elucidate the ability of the pro-tumorigenic fibrotic environment to potentially 

reroute metastasis to a non-organotropic organ we surgically induced kidney fibrosis 

utilizing the same 4T1 and MMTV-Pymt methods and models and time course as the lung 

fibrosis cohort. Given the presence of chronically and significantly upregulated expression 

of pro-tumorigenic factors in the fibrotic kidney and publications reporting the chemotactic 

properties of upregulating these factors on cancer cells we surmised that this environment 

should reroute metastatic spread to the damaged kidney. Surprisingly, upon euthanization 

of the mice with kidney fibrosis there was no macroscopically apparent metastatic nodules 

in the 4T1 orthotopic, MMTV-Pymt of the 4T1 intravenous model (Figure 22A, B). Further 

histological analysis of the kidneys confirmed the induction of fibrosis, and that despite the 

development of this pro-tumorigenic environment, fibrosis was not able reroute metastatic 

spread to a non-organotropic organ. This result indicates that while the previously reported 

pro-tumorigenic factors found in the pre-metastatic niche are sufficient to enhance 

metastasis to an already tropic organ, they are not sufficient to redirect metastatic spread. 

The inability of the fibrotic environment to redirect metastatic disease indicates that there 

are additional factors that affect metastatic tropism in addition to the previously reported 

pre-metastatic niche alterations that occur in the tropic organs.  

In addition to noting that fibrosis could not redirect metastatic disease to the non-

tropic kidney we also analyzed metastasis in the lungs of mice with kidney fibrosis. 

Histopathological analysis revealed there was an increase in metastasis to the lungs of 

mice that had kidney fibrosis. Increased lung metastasis was observed in the 4T1 orthotopic 

model (Figure 21A, C, D) Similarly, metastasis to the lung was enhanced in the MMTV-

Pymt model (Figure 21E, F, G) and also in the 4T1 intravenous model (Figure 21 I, K, L) 
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with kidney fibrosis. There was no effect of kidney fibrosis on primary tumor growth (Figure 

21B, J). These results indicate that kidney fibrosis is able to systemically affect distant 

organs to enhance metastasis and colonization. However, given the similarities between the 

fibrotic environment, the tumor microenvironment, and the pre-metastatic niche this effect 

appears to be unrelated to the molecules that have previously been associated with 

determination of metastatic organotropism. 
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Figure 21: Metastatic Analysis in Kidney Fibrosis A) Histological representation of MMTV-Pymt metastasis 

with and without kidney fibrosis. B) Pymt Tumor growth curve C) Metastatic and D) surface lung nodule 

quantification of MMTV-Pymt mice with and without kidney fibrosis. E) Histological representation of 4T1 

orthotopic metastasis with and without kidney fibrosis. F) Metastatic, G) surface lung nodule quantification 

and H) CTC analysis of 4T1 orthotopic mice with and without kidney fibrosis. I) Histological representation 

of 4T1 IV metastasis with and without kidney fibrosis. J) 4T1 Orthotopic growth curve K) Metastatic and L) 

surface lung nodule quantification of 4T1 IV mice with and without kidney fibrosis. N=6 for each group. 

Scale bar=25um. Data are represented as the mean ±SEM using Student’s T-test for *p < 0.05, **p < 0.01, 

****p < 0.0001. ns, not significant. 
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Figure 22: Metastasis did not spread to the kidneys despite the fibrotic environment. A) 

Representative images of kidneys from each cohort showing no metastatic growth. B) 4T1 GFP 

labelled cells where visualized in the tumor and lung metastasis, but could not be located in the 

kidneys of mice from any cohort. Scale bar=25um. 
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Chapter 5: Kidney fibrosis increases the circulating levels of cytokines known 

to affect vasculature  

The finding that fibrosis cannot reroute metastatic disease, but can systemically 

enhance the spread to tropic organs indicates that the fibrotic environment, similar in nature 

to the primary tumor microenvironment releases factors that travel systemically and effect 

various aspects of the host in an organ-specific manner. Given that in both the fibrotic lung 

and fibrotic kidney there were significant increases in the presence of pro-tumorigenic 

molecules in the stromal microenvironment we hypothesized that this organ-specific 

reaction to circulating fibrotic cytokines might occur within a non-stromal aspect of the 

organ.  

Chronically elevated circulating cytokines during kidney fibrosis 

To determine the cytokines elevated during fibrosis we initially performed an analysis 

using Ilumina array data of fibrotic kidneys as compared to their healthy kidneys. Utilizing 

genes that were increased in the fibrotic kidneys we performed pathway and gene ontogeny 

analysis using the online software DAVID. Analysis of this data revealed significant changes 

associated with both tight junctions and with vascular remodeling (Figure 23,24, 25). 

Categorical analysis revealed a number of vascular related genes upregulated in the fibrotic 

kidneys when compared to healthy kidneys. While these factors are associated with 

alterations in tight junction structure and vasculature further experimentation was required 

to determine which of the factors was also secreted into the circulation.  
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Healthy Kidney Fibrotic Kidney 

Figure 23: Heat Map of genes differentially expressed in healthy 

kidneys versus fibrotic kidneys.  N=3 for each cohort.  
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 Category Term Count % P-Value Benjamini

GOTERM_BP_FAT regulation of transcription 517 12.8 3.60E-05 3.40E-03

GOTERM_BP_FAT transcription 432 10.7 1.20E-06 2.40E-04

GOTERM_BP_FAT intracellular signaling cascade 247 6.1 1.30E-07 6.40E-05

GOTERM_BP_FAT phosphate metabolic process 229 5.7 2.20E-06 3.60E-04

GOTERM_BP_FAT phosphorus metabolic process 229 5.7 2.20E-06 3.60E-04

GOTERM_BP_FAT cell cycle 195 4.8 1.70E-12 7.30E-09

GOTERM_BP_FAT phosphorylation 195 4.8 2.20E-06 3.70E-04

GOTERM_BP_FAT protein amino acid phosphorylation 188 4.7 8.50E-09 7.20E-06

GOTERM_BP_FAT cell adhesion 177 4.4 5.80E-11 1.20E-07

GOTERM_BP_FAT biological adhesion 177 4.4 6.90E-11 9.70E-08

Category Term Count % P-Value Benjamini

KEGG_PATHWAY Pathways in cancer 91 2.3 2.80E-04 4.00E-03

KEGG_PATHWAY MAPK signaling pathway 85 2.1 2.60E-06 1.20E-04

KEGG_PATHWAY Focal adhesion 71 1.8 2.10E-07 1.30E-05

KEGG_PATHWAY Regulation of actin cytoskeleton 65 1.6 4.20E-04 5.20E-03

KEGG_PATHWAY Chemokine signaling pathway 56 1.4 5.50E-04 6.00E-03

KEGG_PATHWAY Cell adhesion molecules (CAMs) 53 1.3 3.40E-05 8.90E-04

KEGG_PATHWAY Cell cycle 52 1.3 1.40E-07 1.30E-05

KEGG_PATHWAY Endocytosis 52 1.3 3.80E-02 1.50E-01

KEGG_PATHWAY Tight junction 46 1.1 1.60E-04 2.40E-03

KEGG_PATHWAY Neurotrophin signaling pathway 45 1.1 1.30E-04 2.10E-03

B

 

Figure 24: Gene Ontogeny and KEGG analysis from DAVID. A) The top 10 gene ontogeny terms of 

upregulated genes in fibrotic kidneys as compared to healthy kidneys. B) The top 10 pathway terms 

upregulated in fibrotic kidneys as compared to healthy kidneys.  
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Based on the results of our gene array we selected a cytokine array from R&D 

systems and ran multiple samples from healthy, cutaneous wound, fibrotic lung, and fibrotic 

kidney serum. While a number of cytokines were increased in the serum of mice with 

fibrosis as compared to the healthy and wounded serum, we noted that Angiopoietin 2 was 

elevated both in our gene array data (Figure 25A) and in the serum of mice with kidney 

fibrosis (Figure 25B, 26). To confirm our observations from the cytokine array we 

performed an Angiopoietin 2 specific ELISA on the serum of all the cohorts and their 

respective controls. In accordance with previously published data our basal levels of 

Angiopoietin 2 were around 2000pg/ml. Most notably the serum Angiopoietin 2 levels of 

mice with kidney fibrosis were significantly elevated (Figure 27). Interestingly, Angiopoietin 

2 was not as elevated in the serum of mice with lung fibrosis as compared to the serum of 

mice with healthy lungs (Figure 27). Furthermore, we also confirmed that in the fibrotic 

kidney the gene expression of Angiopoietin 2 was increased (Figure 27).  

 These results suggest that fibrotic kidney damage releases continuous Angiopeotin2 

into circulation at significantly elevated levels. Given that Angiopoietin 2 has been shown to 

be an antagonist of Angiopoietin 1 and a destabilizer of endothelium cell-cell interactions 

and tight junctions, we surmised that this could cause systemic alterations in vascular 

permeability leading to increased likelihood of extravasation of circulating cancer cells.  
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Healthy 

Kidney

Fibrotic 

Kidney

Angpt2 2.686827066 2.944020161

Angptl4 0.440827707 1.220089674

Arsi 1.151590481 1.31937287

Bmper 1.213160756 1.630819299

C1qtnf1 1.480110129 2.072651677

Car11 1.930841761 2.20601871

Cbln4 0.906188688 1.179973631

Ccdc80 1.788511187 2.411386852

Ccl27 1.825537314 2.094441672

Ccl4 1.559123474 2.250242769

Ccl6 1.301543707 1.909055509

Ccl7 0.953635732 2.130140806

Ccl9 1.532162764 2.769567054

Cd200 1.235598141 1.630507323

Chi3l1 1.448993189 2.008385578

Chi3l3 0.866542544 1.426706553

Col5a2 1.011755999 1.49785646

Cort 0.968446991 1.227021643

Crim2 0.780308201 1.150787709

Crlf1 1.203350984 2.298479233

Csnk 0.666864813 1.37453911

Cst3 3.728588169 3.97733859

Cxcl1 1.985125312 3.100307702

Cxcl14 1.444282125 2.175404193

Cxcl16 1.666921676 2.113569709

Cxcl4 1.474289059 2.120267093

Cyr61 1.214319614 1.728536391

Defb1 0.508914138 0.887503202

Defb12 0.859861173 1.135325017

Defb13 1.083088772 1.355366568

Defb14 1.135813339 1.327082405

Defb25 1.19918823 1.55391393

Defcr6 1.14912075 1.370985645

Dkk3 2.561431809 3.002888414

Dmkn 1.178484511 1.46265147

Dpt 1.348692376 1.718518532

Emb 2.848215967 3.157201867

Emid2 1.863537392 2.41603864

Emilin1 1.914819011 2.317480076

Emilin2 1.439800124 2.078150069

Enam 0.66116617 1.067965168

Fam132b 0.928016812 1.375539206

Fgfbp1 1.359104123 1.715048026

Fgl2 0.775854487 1.333961836

Folr4 0.809812895 1.310729142

Gdf15 2.177485949 2.956504554

Gfod2 1.990271917 2.336560821

Gm414 0.990688003 1.296727894

Gm885 1.416115045 1.648327847

Gpx7 1.388463733 2.072632227

Havcr1 2.800393438 3.399482044

Ifna14 0.684274471 1.108147458

Igfbp1 1.017225321 1.342670058

Igfbp2 1.073919534 1.57076488

Igfbp6 1.137756888 1.453251027

Il17re 2.213389314 2.577406393

Il1f6 1.001721353 1.382612984

Il33 1.847048398 2.744233806

Ins1 1.02997853 1.316344332

Insl3 1.840328794 2.363545168

Kazald1 1.015736236 1.304760542

Kng1 2.661470364 2.997066779

Lcn2 1.673118004 3.511398968

Lcn4 1.114687036 1.430200166

Leap2 0.954293095 1.354988814

Lefty2 0.480528707 1.23418946

Lgals3bp 2.68997375 3.264611777

Liph 1.268710829 1.620070149

Ly86 1.601905932 2.348240152

Ly96 1.76402301 2.095665463

Lyz 3.105823828 3.846208793

Lyzs 1.855726435 2.655825017

Matn2 0.915509488 1.261216419

Metrnl 1.410531653 1.621258078

Mfap3 2.445204259 2.729570223

Mfap5 0.957038325 1.670752653

Muc2 0.929690555 1.218831046

Mxra8 2.278854884 2.678994299

Myoc 0.854172622 1.369251352

Nbl1 2.250096554 2.771443332

Nmu 0.832322176 1.130778531

Npff 1.376690753 1.593261903

Oit1 1.135063746 1.513477203

Olfm1 2.30018405 2.676212549

Olfml2b 1.630940008 2.06579486

Olfml3 2.483315186 2.965838441

ORF9 1.146817664 1.541802298

Pcolce2 1.244285569 1.728113857

Pdgfrl 1.070289172 1.370074261

Pglyrp 1.156006414 1.347330874

Pla1a 2.537746331 2.876818776

Prss23 1.47141378 1.943230841

Figure 25: Vascular Adhesion Related Genes and Cytokine array in 

multiple models of fibrosis. A) Genes associated adhesion and tight 

junctions compared in healthy kidneys versus fibrotic kidneys. Probes 

fluorescent units are shown in log scale. B) Heatmap of cytokines from 

serum of healthy mice, mice with a cutaneous wound at day 10, mice 

with lung fibrosis at day 10, and mice with kidney fibrosis at day 10. N=4 

for healthy and wounded, and n=6 for fibrotic lung and fibrotic kidney.  
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Figure 26: Quantitative Analysis of Serum Cytokine Array. The quantification of each cytokine in the 

cytokine array. Data are represented as the mean ±SEM using One-Way Anova T-test for *p < 0.05, 

**p < 0.01, ****p < 0.0001. ns, not significant. 
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Chapter 6: Circulating Angiopoietin -2 alters vasculature in organ specific 

manner 

The finding that fibrotic kidney increases circulating levels of Angiopoietin 2 led us to 

look into how Angiopoietin 2 might influence organ vasculature in different manners and 

whether this could have an effect on organotropism. This is of particular importance as 

elevated levels of circulating Angiopoietin 2 have been linked with multiple pathologies 

including diabetic retinopathy, pulmonary edema during sepsis, and a decrease in disease 

free survival in breast cancer patients and thus a worse prognosis.  

Given that the fibrotic kidney was found to have an upregulated expression of 

Angiopoietin 2, but yet did not develop metastasis we hypothesized that the vascular 

response to Angiopoietin 2 may be different in varying organs. Given the various forms and 

functions of the mammalian organs it is reasonable that in addition to having physically 

Figure 27: Increased serum and fibrotic kidney expression of Angiopoietin 2. A) Angiopoietin 2 ELISA 

comparing healthy, wounded, PBS treated lung, Bleomycin fibrotic lung, contralateral kidney and UUO 

induced fibrotic kidney serum for Angiopoietin 2. N=4 B) qPCR for Angiopoietin 2 expression in healthy 

kidney, contralateral kidney, UUO induced fibrotic kidney, and kidney of mice with lung fibrosis. N=3 per 

cohort.  Data are represented as the mean ±SEM using Student’s T-test for *p < 0.05, **p < 0.01, ****p < 

0.0001. ns, not significant. 
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different endothelium (continuous, fenestrated, and sinusoidal) each different organ may 

respond to similar cytokines in different manners.  

Differential Vascular permeability responses in the lungs and kidneys of mice treated 

with Angiopoietin 2 

In order to assess the vascular permeability in vivo we utilized FITC labelled dextran 

(70,000kDa) injected into mice after two rounds of treatment with 100ug of Angiopoietin 2 

intravenously. Control mice received PBS on the same day as the Angiopoietin 2 injections. 

The lungs and kidneys were harvested from these mice and histological analysis was 

performed on formalin fixed sections after antigen retrieval. By utilizing formalin fixed 

sections, as opposed to frozen OCT we are able to get a significantly better visualization of 

histological structure and thus a more precise analysis of location of FITC positivity. By 

counterstaining with Isolectin B4 we can visualize vasculature and differentiate between 

vascular spaces and parenchymal tissue. Analysis of the lungs of the mice treated with 

Angiopoietin 2 clearly showed an increase in FITC positivity in parenchymal spaces (Figure 

28A, B). In comparison the lungs of the mice treated with PBS showed specific localization 

of FITC to within vessels in the lungs. These finding clearly indicate that elevated circulating 

Angiopoietin 2 induced pulmonary vascular leakage.  
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 Utilizing the same methodology, we also analyzed the effect of Angiopoietin 2 on the 

vasculature of the kidney. In stark contrast to the increased vascular leakage found in the 

lungs of mice treated with Angiopoietin 2, there was no difference in FITC analyzed 

vascular leakage of the kidney between the mice treated with Angiopoietin 2 compared to 

the PBS treated mice. Given that the kidney consists of the cortex, outer medulla, and inner 

medulla, all of which have different vascular physiology we analyzed all three areas for 

potential vascular leakage. Yet, despite the highly vascular nature of the kidney we noted 

no permeability difference between PBS and Angiopoietin 2 in the peritubular capillaries or 

the vasa recta capillaries (Figure 29A, B). Given that the lungs and kidneys were harvested 
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Figure 28: Increased dextran leakage in lungs of mice treated with 

Angiopoietin 2. A) Representative immunofluorescent images of 

the lungs of mice treated with PBS versus Angiopoietin 2 and 

stained for Isolectin-B4. N=5 for each cohort. B) Quantification of 

FITC positivity in perivascular parenchymal spaces in PBS versus 

Angiopoietin 2 treated mice lungs. Scale bar=25um. Data are 

represented as the mean ±SEM using Student’s T-test for *p < 

0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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from the same mice we concluded that vascular endothelial response to circulating 

cytokines such as Angiopoietin 2 is organ specific.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: No dextran leakage in kidneys of mice treated with Angiopoietin 2. A) Quantification of 

FITC positivity in perivascular parenchymal spaces in PBS versus Angiopoietin 2 treated mice 

kidneys in the cortex, outer medulla and inner medulla. B) Representative immunofluorescent images 

of kidneys of mice treated with PBS versus Angiopoietin 2 and stained for Isolectin-B4 in the kidney 

cortex. C) Representative immunofluorescent images of kidneys of mice treated with PBS versus 

Angiopoietin 2 and stained for Isolectin-B4 in the kidney outer medulla. D) Representative 

immunofluorescent images of kidneys of mice treated with PBS versus Angiopoietin 2 and stained for 

Isolectin-B4 in the kidney inner medulla. N=5 per cohort. Scale bar=25um. Data are represented as 

the mean ±SEM using Student’s T-test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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 To analyze the pathological vascular effects of wounds, lung fibrosis and kidney 

fibrosis on the lungs we performed histological analysis of the lungs from the mice with 

wounds, fibrotic lung or fibrotic kidneys. Edema was measured by finding the area of 

positive edema in both alveolar and pleural spaces. Pleural thickness was measured by 

measuring the thickness of the lung pleura at 8 areas in each different lung. Our analysis 

showed the lungs of mice with kidney fibrosis has significantly increased pulmonary edema 

(Figure 30B, D) and pleural thickness (Figure 30A, C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Increased edema and lung damage in lung fibrosis and lungs of mice with kidney fibrosis. A) 

Representative images of pleural thickness in the lungs of mice from each cohort. B) Representative images of 

alveolar and pleural edema from the lungs of mice from each cohort. C) Quantification of pleural thickness from the 

lungs of mice from each cohort. D) Quantification of alveolar and pleural edema from the lungs of mice from each 

cohort. N=6 for Healthy, wound, PBS, Bleomycin, sham, and UUO. N=3 for Angiopeotin-2 cohort. Images taken at 

63X. Data are represented as the mean ±SEM using Student’s T-test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, 

not significant. 
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Lung and kidney endothelial response to Angiopoietin 2 treatment in vitro 

Using two in vitro endothelial cells lines isolated from the lungs and kidneys of an 

SV-40 T-antigen mouse we tested the response to Angiopoietin 2 to determine if they had a 

differential effect. While the predominance of previous studies used HUVECs to study 

endothelial response in vitro, here we used endothelial cells isolated directly from the 

organs of interest. HUVECs were isolated from umbilical cord cells which are not shown to 

form metastatic disease, as compared to the lungs. This allowed us to compare the 

response of lung and kidney endothelial cells when exposed to Angiopoietin 2. By treating 

both cell lines with 1ug of Angiopoietin 2 we then immunofluorescently stained the cells for 

Phalloidin and ZO-1. Although previous publications have shown response in HUVECs as 

low as 400ng of Angiopoietin 2, we opted to use 1ug to ensure sufficient response of the 

treated cell lines. The non-treated cell lines received PBS vehicle. ZO-1 costained with 

Phalloidin permitted visualization of cellular borders and was additionally confirmed with 

bright field imaging. The visualization of the cellular borders is necessary for ZO-1 analysis 

as the tight junction complex is located between cells, with ZO-1 localizing to the cell 

membrane to bind the transmembrane proteins that form the tight junction.   

Analysis of ZO-1 localization in non-treated and treated lung endothelial cells clearly 

indicated that after 30 minutes of Angiopoietin 2 treatment ZO-1 delocalized from the 

endothelial cell membrane (Figure 31A, B). As ZO-1 is a critical protein in the formation of 

the tight junction complex this indicates that lung endothelium become destabilized when 

exposed to Angiopoietin 2.  

Furthermore, by performing western blot analysis for phosphorylated Tie-2 Tyr1108 

on cells treated with Angiopoietin 2 we clearly show that while the lung endothelial cells 

react rapidly to the treatment, within 45 minutes to an hour they have returned to basal 



www.manaraa.com

82 
 

levels (Figure 31C). This fast reaction and return response indicates that once Angiopoietin 

2 returns to basal levels in circulation the vasculature will rapidly stabilize. Conversely, with 

chronically elevated circulating Angiopoietin 2 levels the vasculature will be unable to 

stabilize and the lung endothelium will lose functioning tight junctions. The result of which 

will be increased vascular permeability and increased potential for circulating tumor cells to 

extravasate. Furthermore, there was a direct activation and increase in pERK which 

coincided with the pTie2 in the lung endothelial cells treated with Angiopoietin 2 (Figure 

31C). 

Upon testing kidney endothelial cells, we found that their ZO-1 did not delocalize 

from the membrane upon Angiopoietin 2 treatment (Figure 31D, E), although their levels of 

pTie-2 responded rapidly within the first 5 minutes but decreased after that (Figure 31F). 

Furthermore, the changes in pERK observed in the lung endothelial cells did not occur in 

the kidney endothelial cells (Figure 31F). These results indicate that renal and lung 

endothelial cells appear to react in a dissimilar manner when exposed to Angiopoietin 2. 

Given that we reported that in vivo we observed no vascular leakage in the kidneys of mice 

treated with Angiopoietin 2, this indicates that the vasculature responds in an organ-specific 

manner.  
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Figure 31: ZO-1 delocalized in lung endothelial cells, but not renal endothelial cells when treated with Angiopoietin 

2 in vitro. A) Representative images of ZO-1 expression and membrane localization in lung endothelial cells treated 

with PBS or Angiopoietin 2. B) Quantification of ZO-1 membrane localization in lung endothelial cells treated with 

Angiopoietin 2. N=3 C) Western blot showing phosphoTie-2 Ty 1108, and p-ERK in lung and renal endothelial cells 

treated with Angiopoietin 2 at 5, 15, 30, 45 and 60 minutes. Actin is the control. D) Representative images of ZO-1 

expression and membrane localization in renal endothelial cells treated with PBS or Angioppoetin-2 E) 

Quantification of ZO-1 membrane localization in renal endothelial cells treated with Angiopoietin 2. N=3 F) Western 

blot showing phosphoTie-2 Ty 1108, and p-ERK in renal endothelial cells treated with Angiopoietin 2 at 5, 15, 30, 

45 and 60 minutes. Scale bar=5um. Data are represented as the mean ±SEM using Student’s T-test for *p < 0.05, 

**p < 0.01, ****p < 0.0001. ns, not significant. 
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Organ specific tight junction response to Angiopoietin 2 treatment 

As our in vitro results indicated that lung and kidney endothelial cells responded with 

a dissimilar delocalization of ZO-1 upon Angiopoietin 2 treatment, we surmised that an 

aspect of the vasculature must be responsible for organ-specific response to Angiopoietin 2 

and the fibrotic environment. Given that capillaries are the predominant vascular structure 

we hypothesized that pericytes and tight junctions may respond in differential manners 

when endothelial cells are exposed to varying circulating cytokines. As capillaries do not 

possess smooth muscle and have been shown to be regulated by pericyte activity we 

choose to focus on the tight junction and pericyte response to fibrosis.  

As fibrotic lungs enhanced metastasis, and fibrotic kidneys did not reroute 

metastasis, but did enhance it to the lungs we compared gene expression by Illumina array 

of healthy lungs versus healthy kidneys, healthy and fibrotic lungs, and healthy and fibrotic 

kidneys. The purpose of these comparisons was to determine how tight junction and 

pericyte gene expression response was differentially expressed in the healthy organs, and 

how the response was different in the fibrotic lung versus the fibrotic kidney. We 

hypothesized that gene signature differences in the fibrotic lung compared to the kidney 

fibrosis may be responsible for the organ specific vascular response. We also analyzed the 

gene expression level differences between healthy lungs and healthy kidneys to determine 

if either organ was more dependent on a specific tight junction. As vascular permeability is 

directly related the expression of tight junction proteins we analyzed the differential levels of 

claudins, occuludin, the junction adhesion genes, the zonula occludin genes, and genes 

known to be associated with pericytes.  

The gene expression analysis revealed significantly different organ specific 

responses to fibrotic insult within the fibrotic lung and kidneys. Analysis revealed that 
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Claudin-5 expression decreased in the fibrotic lung, while it was increased in the fibrotic 

kidney (Figure 32A, B, C). The importance of the differential changes in Claudin-5 

expression were of particular interest given its role in the formation of tight junctions and 

that is considered a key protein in endothelial tight junction barrier formation and modulation 

of vessel permeability. Furthermore, we found that the expression of the Angiopoietin 2 

receptor Tie 2 TEK gene expression in the healthy kidneys was significantly lower than in 

the healthy lungs (Figure 32D), indicating that Angiopoietin 2 would affect endothelium at 

different levels in the lung as compared to the kidneys. It is also possible that given the 

chemotactic relationship between Tie 2 and Angiopoietin 2 that the circulating cytokine 

moves more towards the lungs.  

An analysis of the genes associated with pericytes noted no significant change in 

desmin in the fibrotic lungs, but a significant increase in desmin in the fibrotic kidneys 

(Figure 32A). Similarly, there was no significant change in PDGFRb in the fibrotic lungs, but 

an increase in the fibrotic kidneys (Figure 32A). Finally, there was no significant change in 

NG2 expression in either the fibrotic lung or the fibrotic kidneys (Figure 32A). Furthermore, 

there was a significant decrease in the expression of Endothelin-1 in the fibrotic lungs while 

the fibrotic kidneys showed a significant increase (Figure 32A). This is of interest given that 

Endothelin-1 is synthesized and secreted by the endothelial cells and its known receptor is 

expressed by pericytes. These differential responses indicate that the vasculature responds 

differently in each organ and there is a thus a differential pericyte response.  

These results indicate that pro-tumorigenic factors will illicit different responses in the 

lung versus the kidney vasculature. The differential response functionally results in either 

increased vascular permeability in the lung, or decreased vascular permeability in the 

kidney. In the context of breast cancer, the increase in pulmonary vascular permeability 
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enhances metastatic extravasation. Conversely a decrease in kidney vascular 

permeabilization in the presence of pro-fibrotic factors prevents the extravasation of 

circulating tumor cells and thus makes the kidney a rare organotropic organ in breast 

cancer metastasis. 
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Figure 32: Lung and kidney fibrosis show different expression of tight junction proteins. A) Heatmap of probes 

for genes associated with tight junctions. Probes fluorescent units are shown in log scale. B) qPCR for Cldn-5 

in a healthy versus a fibrotic kidney. N=3 C) qPCR for Cldn-5 in a healthy versus fibrotic lung. N=3. D) qPCR 

for TEK with 2 different primers sequences N=3. Data are represented as the mean ±SEM using Student’s T-

test for *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not significant. 
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Cldn1 1.725855 2.074025 1.885439 1.714346 2.067155 2.553294

Cldn10 1.042846 3.078517 3.240388 2.995372 3.090022 2.375598

Cldn10 2.511397 3.353452 2.521146 2.391559 3.157074 2.860594

Cldn10 3.30153 3.92243 2.48997 2.398397 3.36834 3.228519

Cldn11 1.634065 2.084433 1.822978 1.696733 2.081764 2.088335

Cldn12 2.746894 2.937576 2.73344 2.70825 2.945622 3.040753

Cldn15 1.691578 2.063898 2.15183 2.055265 0.987007 1.223858

Cldn15 1.0673 0.816479 1.861464 1.827238 2.237179 2.278022

Cldn15 2.070511 2.239789 1.548988 1.542584 2.056685 2.021418

Cldn17 0.806782 1.32002 1.494456 1.627767 1.363203 1.224303

Cldn18 3.63973 1.475166 3.551911 3.533167 1.492079 1.242415

Cldn2 1.50254 3.714192 1.763974 2.092983 3.702203 3.589471

Cldn2 1.396213 3.678132 1.724853 2.033223 3.742804 3.706964

Cldn22 0.95499 0 1.524659 1.529774 0.823584 1.195657

Cldn23 2.122793 1.418509 2.19241 2.109129 1.448946 1.721983

Cldn3 3.092966 2.077739 3.050777 3.04431 2.071095 2.775268

Cldn4 1.784237 2.460485 1.933699 3.179943 2.461372 3.524926

Cldn5 3.880881 2.353398 3.775064 3.624527 2.352868 2.557851

Cldn6 1.068859 1.723275 1.548492 1.62667 1.716628 2.26922

Cldn7 1.861838 1.808166 1.984234 1.841974 1.794374 2.042458

Cldn9 1.839134 1.906491 1.966761 1.777399 1.894351 1.737368

Cldnd1 2.253058 2.039226 2.299504 2.307267 2.030638 2.17443

Tjp1 2.423483 1.729211 2.443944 2.369735 1.717069 1.990335

Tjp2 2.845738 2.395895 1.551893 1.646987 2.396045 2.500615

Tjp3 1.723243 1.618194 1.905523 1.850072 1.614201 1.818549

Tjp3 1.757639 1.726899 1.881675 1.897495 1.715031 1.891542

Ocln 2.080158 2.148476 2.157223 2.012169 2.144246 2.187372

Jam2 1.719204 0.904621 1.773629 1.879762 1.042712 1.254139

Jam2 1.569251 1.090264 1.806081 1.855982 1.086846 1.251948

Jam2 1.619956 0.96338 2.182666 2.203421 1.503235 1.438369

Jam2 2.110813 1.486255 1.87785 1.891496 1.178643 1.12545

Jam3 1.123475 1.318572 1.56855 1.595902 1.362949 1.16336

Jam4 2.47842 3.131161 2.491212 2.808383 3.144961 3.087373

Edn1 3.198908 1.719981 3.144331 2.924457 1.716141 2.745697

Des 3.19052 2.167121 3.205549 3.117294 2.163552 2.447314

Pdgfrb 2.278738 1.693994 2.321405 2.2927 1.687429 2.268804

Cspg4 1.875004 1.946552 1.994376 1.864685 1.935633 1.801706

Anpep 2.395541 2.747236 2.419269 2.090828 2.752616 2.563633

Acta2 2.395541 2.747236 2.625435 3.188125 2.112624 2.736601

Lox 2.557703 1.076554 2.560553 3.624162 1.172391 2.466386
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Chapter 7: Anti-Angiopoetion-2 rescues the metastatic enhancement effects of 

kidney fibrosis 

 As we have identified Angiopoietin 2 as a factor secreted by the fibrotic kidney, and 

as it has also been implicated in other vascular related pathologies we next wanted to 

determine whether treatment of mice 1) with recombinant murine Angiopoietin 2 and 

injected intravenously with 4T1 cancer cells or 2) with Angiopoietin 2 antibody peptide that 

had both kidney fibrosis and breast cancer could rescue the enhanced metastatic 

phenotype. Mice injected with recombinant murine Angiopoietin 2 one day prior and one-

day post intravenous injection with 4T1 cancer cells (Figure 33A) showed significant 

increase in colonization of the lungs (Figure 33B, C, D). We then utilized the orthotopic 

model either given control IgG or treated with the Angiopoietin 2 peptide. Mice treated with 

IgG had either no kidney fibrosis or kidney fibrosis, and similarly mice treated with the 

Angiopoietin 2 peptide had either kidney fibrosis or no kidney fibrosis. In the mice the 

control group treated with IgG we saw an increase in metastasis to the lungs similar to the 

previous phenotype in Figure 21 (Figure 33F, G, H). When the mice where treated with the 

Angiopoietin 2 peptide we saw the metastatic burden in the lungs of mice kidney fibrosis 

return similar levels of mice without kidney fibrosis (Figure 33F, I, H). These results indicate 

that Angiopoietin 2 was a key factor in the enhancement of metastatic spread and 

colonization of lungs in mice with kidney fibrosis.  
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Figure 33: Anti-Angiopoetin 2 Antibody in Tumor Bearing mice with Kidney Fibrosis Reduces Lung Metastasis to 

Levels of Mice without Kidney Fibrosis. A) Schematic of time course treatment with recombinant murine 

Angiopoietin 2 and injected intravenously with 4T1 cancer cells. B) Quantification of colonization of the lungs of 

mice treated with PBS or recombinant murine Angiopoietin 2 and injected intravenously with 4T1 cancer cells. N=6. 

C) Quantification of surface lung nodules of mice treated with PBS or recombinant murine Angiopoietin 2 injected 

intravenously with 4T1 cancer cells. N=6. D) Representative images of the lungs of mice treated with either PBS or 

recombinant murine Angiopoietin 2 and injected intravenously with 4T1 cancer cells. Scale bar=25 um. E) Tumor 

volume measurements over time in orthotopic tumors with sham or UUO and either treated with IgG or anti-

Angiopoietin 2. Two-way Anova with Tukey’s multiple comparison test was used. F) Quantification of the metastatic 

area of the lungs of the indicated groups. N=8 per group. One-Way Anova was used. G) Representative images of 

lungs of mice with either sham or UUO treated with IgG. Scale bar=25 um. H) Quantification of the number of 

surface lung nodules in the indicated groups treated with IgG. N=8 per group. I) Representative images of lungs of 

mice with either sham or UUO treated with anti-Angiopoietin 2. Scale bar=25 um. J) Quantification of the number of 

surface lung nodules in the indicated groups treated with anti-Angiopoietin 2. N=8 per group. Data are represented 

as the mean ±SEM using Student’s T-test unless otherwise noted. *p < 0.05, **p < 0.01, ****p < 0.0001. ns, not 

significant.  
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Summary of Results 

Herein we set out to determine the role of the fibrotic environment in the 

determination of breast cancer metastatic organotropism. By showing the significant 

similarities between the fibrotic lung and kidney for factors previously associated with the 

pre-metastatic niche and organotropism we developed a way to test the contribution of 

these factors on metastatic tropism. As expected the fibrotic environment in a tropic organ 

enhanced metastasis to that organ. However, despite previous evidence implicating the 

growth factors in the control of metastatic spread we did not see any metastasis to the 

fibrotic kidney. None the less the fibrotic kidney did enhance metastatic spread to the lungs. 

This led us to hypothesize that there was an alternative organ specific alteration that 

occurred due to the secretion of pro-tumorigenic fibrotic factors into circulation. We 

identified Angiopoietin 2 as a cytokine that is found to be upregulated in the circulation of 

fibrotic kidney disease. Previous research has also shown that Angiopoietin 2 is 

upregulated in patients with breast cancer and is prognostic of decreased disease free 

survival. By treating mice with Angiopoietin 2 we observed an organ specific vascular 

response leading to increased vessel permeability in the lungs, and a converse reaction in 

the kidneys. Further analysis revealed that there is an organ specific vascular response 

mediated by the expression of the tight junction protein Claudin-5. Finally, by treating tumor 

bearing mice that had fibrotic kidney damage with recombinant murine Angiopoietin 2 we 

showed that the enhanced metastatic phenotype could be enhanced, and it could be 

rescued by treating tumor bearing mice with kidney damage with anti-Angiopoietin 2. 

Together, our results show for the first time that organotropism is due to an organ specific 

vascular response to increased levels of circulating cytokines.  
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Chapter 8: Summary and Discussion 

The recognition that primary tumors have specific tropism for metastatic spread has long 

been an area of research (Fidler 2003) in the hopes of determining the mechanisms that 

control metastasis. The ultimate goal being the development of therapies aimed at treating 

and preventing metastasis. Given the fact that modern therapies are all but unable to treat 

metastatic disease and the poor prognosis associated with the diagnosis, this continues to 

be a high priority in cancer research. Since Virchow, Paget and Ewing (Talmadge and Fidler 

2010) first began the study of metastatic disease the predominant focus of research has 

been to ask why cancer has tropism for specific organs. Given the failure of this approach to 

determine the mechanistic control of organotropism we choose to approach this issue from 

an alternative viewpoint. In this study we focused on not only asking why cancer spreads to 

the tropic organ, but also why it does not spread to non-organotropic organs. By developing 

a pro-tumorigenic environment in both a tropic and non-organotropic organ for two 

commonly used breast cancer metastasis models, we were able to elucidate the 

contribution that this environment plays in directing metastatic spread. This also allowed us 

to identify that an organ-specific vascular response to increased pro-tumorigenic cytokines 

may in fact be a key determining mechanism in organotropism of metastatic disease. 

Although it is considered common medical knowledge that organs have different structural 

vascular mechanics (Junqier Histology), the finding that organ-specific vasculature 

responds differently to the same cytokines, is a novel finding and may pave the way for the 

research and development of organ-specific therapies not only for cancer related diagnosis 

but also for organ specific pathologies.  

The Unusual Suspects; Organotropism is not determined by previously published 

factors complicit in the pre-metastatic niche 
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While it has commonly been published that the tumor microenvironment, the pre-metastatic 

niche and the fibrotic environment are considered similar (Arwert, Hoste and Watt 2012), 

the ability of this environment to direct metastasis has not been truly tested. If these 

environments are all biochemically and biophysically similar, then the induction of fibrosis 

should enhance metastatic spread regardless of the organ of damage. Although some 

research has been done to show that the fibrotic environment can enhance metastasis 

(Erlner 2016), this has only been done in organs that are already tropic for that primary 

tumor. While this is relevant research, it does not fundamentally test the ability of the known 

pro-tumorigenic fibrotic factors to actually direct metastasis. If the fibrotic factors are the 

determinants of organotropism then regardless of location, when significantly upregulated, 

metastasis should spread to that organ. However, we clearly show here that that is not the 

case. This finding indicates that while these pro-tumorigenic fibrotic factors are able to 

enhance metastasis they are insufficient in directing organotropism. This indicates that 

alternative factors are the source of the mechanism of organotropism. While our model of 

surgically induced kidney fibrosis and chemically induced lung fibrosis do show increases in 

fibrotic factors it is important to note that the induction methods may elicit different fibrotic 

development. The surgically induced fibrosis causes an increase in shear stress in the 

proximal tubules due to an increase in pressure from un-excreted filtrate. This increase in 

continued shear stresses leads to proximal tubule damage and the chronic release of 

fibrotic factors ultimately leading to kidney fibrosis. While the chemical induction in the lungs 

is a response to the DNA damage agent bleomycin leading to an increase in epithelial cells 

releasing pro-fibrotic factors. It is possible that the different methods of induction elicit 

different responses. Nonetheless, we clearly show that the factors implicitly believed to be 

the controlling factors for organotropism are upregulated in both our lung and kidney fibrosis 

models. Given that the kidney fibrotic environment could not re-route metastasis we 
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concluded that alternative factors must be responsible for the control of organotropism. This 

result would indicate a paradigm shift as it clearly indicates that the pre-metastatic niche, 

that is significantly similar to the fibrotic environment is not sufficient to direct metastatic 

spread. While this indicates that the fibrotic factors are not responsible for directing 

organotropism, it does not mean that they are not responsible for the enhancement of 

metastasis. In fact, our findings profoundly support previous studies showing that these 

factors are pro-tumorigenic for metastatic enhancement.  

 

The seed grows where you want, you just have to put it there. 

In addition to the pre-metastatic niche being implicated in the determination of 

organotropism, the currently held belief for organotropism is that disseminated cancer cells 

only grow in specific organs based on Paget’s seed and soil hypothesis. However, previous 

publications have shown that murine cancer cell lines that are known to be organotropic for 

specific organs can grow in non-organotropic organs. The key example of this would be the 

growth of 4T1 or B16-F1 cells in the kidneys of mice injected under hydrostatic pressure (Li 

and Liu 2011), and 4T1 cells directly injected into either the renal capsule or the cortex 

(Daniel Guimarães Tiezzi 2013). In these experiments a mammary fat pad cancer cell line 

that does not typically metastasize or colonize the kidney successfully grew in the kidneys. 

Physiologically, the only key system that is bypassed by these experiments is the vascular 

system. In the hydrostatic model they cause systemic vascular permeabilization by 

mechanistically overloading the osmotic pressure within the vessels. The direct injection 

models bypass the vascular system by simply being directed into the parenchymal 

perivascular spaces. Regardless of the method, the important point here is that these cell 

lines successfully grew in the kidneys when the vascular system is not an obstacle. By the 
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process of elimination, it is clear that the vasculature is an essential barrier to metastatic 

growth. However, the endothelial layer is a barrier to extravasation systemically, not just in 

the kidneys. In the lungs circulating cancer cells must also extravasate. Yet, under 

conditions where the primary tumor is grown orthotopically or injected intravenously under 

normal hemostatic pressures these cancer cells only grow in the lungs and other tropic 

organs. This indicates that the vasculature of different organs may behave differently 

depending on the organ. Observations supporting this is that lung fibrosis and kidney 

fibrosis release different levels of circulating Angiopoietin-2. While previous studies have 

shown that there is less Angiopoietin-2 expressed in the lungs as compared to the kidneys 

at basal non-pathological levels (Gale and Yancopoulos 2002), our results indicate that this 

is also true in the pathological state as well. Additionally, our Illumina array study comparing 

fibrotic lungs to healthy lungs showed that Angiopoietin 2 expression decreased significantly 

in the fibrotic lungs. There are many possible reasons for this and they are most likely 

related to the specific functions of the two organs. The lungs most likely have lower basal 

levels of Angiopoietin 2 as increased pulmonary vascular permeability would not be 

conducive to the organism as a whole and is generally restricted to tip cells in the lungs 

(Feltch 2012). Conversely, changes in vascular permeability in the kidneys under the control 

of Angiopoietin 2 might be useful for angiogenesis and also for the increased permeability of 

molecules required for reabsorption into circulation. Interestingly, a recent paper studying 

cerebral cavernous malformations found that increased levels of Angiopoietin 2 show a 

decrease in Claudin 5 expression in the brain (Zhou 2016). Given that breast cancer is 

known to metastasize to the brain, this indicates that Angiopoietin 2 has a similar vascular 

permeability mechanistic effect on both the lungs and brain lending further evidence to the 

organ specific responses to Angiopoietin 2. This further evidences a differential response to 

the same cytokine under similar pathological conditions. We induced fibrosis in both lung 
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and kidneys, and yet the lungs showed a different vascular response than did the kidneys, 

despite the fact that pro-tumorigenic factors where increased in both organs.  

The organ-specific vascular response was further evidenced by the differences in vessel 

permeability as observed when mice where treated with Angiopoietin 2 and FITC-Dextran 

and the response of the organ-specific cell lines. Similar to publications showing that 

increased circulating Angiopoietin 2 induces pulmonary edema and increased lung vascular 

permeability (Parikh and Sukhatme 2006) we also noted the same, but no such change in 

the kidney. This was mirrored in the in vitro studies. When taken together with the evidence 

that increased expression of Angiopoietin 2 is correlated with a poor disease-free prognosis 

in breast cancer patients, this indicates that the fibrotic cytokine Angiopoietin 2 specifically 

causes vessel leakage in the lungs, but not in the kidneys.  

While Angiopoietin 2 is only one of many pro-tumorigenic cytokines released into circulation 

it is the observation that it elicits an organ-specific response that is most important. The next 

step in this area of research would be to test the vascular effects of injecting mice with pro-

tumorigenic factors such as TGFb, TNFa etc. Given that many of these cytokines are 

upregulated in the circulation of patients with tumors, it may be that the organ vascular 

response is what determines organotropism by vessel permeability. Taken a step further it 

may also be that the endothelial vessel response is specific in other mechanistic properties 

as well. For example, the expression of ICAM1 and VCAM1 by endothelial cells induced by 

the increased presence of pro-tumorigenic factors in circulation is a key mechanism for the 

binding of lymphocytes to endothelial cells for diapedesis. Given that we show that 

endothelial cells can respond differently, it is plausible that different organ endothelial cells 

may express different membrane receptors when exposed to pro-tumorigenic cytokines that 

better enable the binding of circulating tumor cells to the endothelial lumen and increase 
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their ability to cross into the perivascular space (Nolan 2013). Our finding also highlights the 

need to determine the specific cytokines that are released by differing primary tumors. If all 

primary tumors released the same cytokine profile, then one would surmise, based on our 

findings, that they would all have similar organotropism. However, it is known that that is not 

the case (Drandoff 2004). Therefore, we would surmise that different primary tumors, and 

possibly even tumors with different genetic mutations would have a different circulating 

cytokine profile. This differing circulating cytokine profile may therefore affect only some 

organs in a manner that makes them more susceptible to metastatic spread.  

 

It is all tight junctions all the time 

An area of study that is woefully under researched is the tight junctions that exist between 

endothelial cells. To date only Claudin-5 has been identified as a tight junction claudin 

involved in endothelial cells. The remaining proteins involved in the tight junctions of the 

endothelial cells have not been pursued in depth. Given that tight junctions are a key 

complex in the formation of the vascular barrier and cell-cell contacts, this is an area that 

requires more focus. Furthermore, similar to the claudin heterogeneity found in epithelial 

cells, this is likely an organ-specific difference that will be key in determining organ 

responses to circulating cytokines in both normal and pathological states (Nolan 2013). 

Given the endothelial mouse models that exist today, this area of research is more 

accessible than it was previously. The development of Tie-1, Tie-2, and CDH5 Cre mice 

tagged with a fluorescent promoter would allow the visualization and or Fluorescent 

Activated Cell Sorting sorting of these cells from specific organs to determine by both qPCR 

and protein staining the expression of the different proteins involved in tight junction 

complex formation (Nolan 2013). While we identified an organ-specific response for the 
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endothelial Claudin-5 tight junction complex, it is unlikely that this is the only claudin, or JAM 

implicate in the formation of endothelial tight junctions. Identification of the proteins that are 

differently required in each organ will open the door for possible organ-specific therapies. A 

good example of this would be with the blood-brain barrier. The main issue behind treating 

cerebral pathologies is that the blood-brain barrier is often impenetrable by drugs injected 

intravenously. The determination of the specific tight junction proteins involved in this barrier 

may allow for the momentary increase in cerebral vessel permeability with co-treatment of 

drugs typically unable to cross the blood-brain barrier. This will also allow for the 

development of new therapies and determination of adverse effects. For example, in the 

mice we treated with anti-Angiopoietin 2 we noted that there was a decrease in metastatic 

lung disease. Given our research into the kidney we could hypothesize that there would be 

limited to no negative renal effects. Given that currently there are trials for anti-Angiopoietin 

2 therapy for cancer patients, this is an important finding.  

In addition to cancer, this also holds vital findings for other systemic pathologies. As 

previously mentioned, patients with sepsis are commonly affected by pulmonary issues, 

including but not limited to pulmonary edema. Basic science research has linked this to 

excess Angiopoietin 2 in circulation. Furthermore, a less well studied pathology known as 

uremic lung also results in both alveolar and pleural pulmonary edema. Uremic lung occurs 

in patients who have either acute or chronic renal damage. It was noted that in the 1940s, 

during World War II, patients with kidney damage often required ventilators due to breathing 

issues. This was originally believed to be related to hypervolemia, and thought to resolve 

with the advent of dialysis. However, this was not the case and uremic lung still possess an 

issue for patients with renal damage today. In both these cases, the excess of circulating 

Angiopoietin 2 occurred in an unrelated organ and yet significantly adversely affected the 
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lungs. By focusing research on which cytokines affect which organs in what specific 

manners we can begin to develop focused therapies to combat organ specific disease.   

 

 

Multiple factors affecting organotropism 

While our research has shown that the previous factors implicated in the pre-metastatic 

niche and fibrotic environment are able to enhance metastasis, they are not able to direct 

organotropism as previously believed. Furthermore, we implicate the vasculature in 

organotropism and show that organ-specific vascular responses to circulating cytokines 

may illicit organ-specific responses. Our research, taken in the context of previous 

publications, indicates that metastatic organotropism is likely a process that is based on the 

following three fundamental factors: 

1) Primary tumor releases multiple subpopulations of circulating tumors cells that 

have differing ability to cross organ-specific endothelial barriers. 

2) Primary tumor releases specific cytokine signature that systemically travel 

through circulation but affect different organ vasculature in different manners 

causing organ-specific alterations in endothelial behavior making specific organs 

susceptible to metastasis.  

3) Tumor secreted cytokines affect different organ environments in different 

manners enhancing metastatic potential.  
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